Advertisement

Current Views of the Biology of Cancer

  • Ronald W. Hart
  • Angelo Turturro
Part of the Contemporary Issues in Risk Analysis book series (CIRA, volume 3)

Abstract

In order to place the different methods used to estimate carcinogenic risk from chemical exposure into context, and to help decide on the best approach to improve this process, it is useful to discuss carcinogenesis with an emphasis on mechanism. Although the mecha nism of action of no carcinogen is completely characterized, the efforts over the last ten years have been very fruitful, and mechanistic explanations of a number of components in the grand design that is carcinogenesis have been described in detail.

Keywords

Sister Chromatid Exchange Chemical Carcinogen Xeroderma Pigmentosum Flavin Adenine Dinucleotide Chemical Carcinogenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, F. E. and Setlow, R. B., 1978, Excision repair in mammalian cells, in: DNA Repair Mechanisms (P. C. Hanawalt, E. C. Friedberg and C. F. Fox, eds.), pp. 333–336, Academic Press, New York.Google Scholar
  2. Ames, B. N., 1983, Dietary carcinogens and anticarcinogens, Science 221:1256–1263.PubMedGoogle Scholar
  3. Argyris, T. S., 1982, Epidermal tumor promotion by regeneration, in: Carcinogenesis: A Comprehensive Survey ,Vol. 7 (E. Hecker, N. E. Fusenig, W. Kunz, F. Marks, and H. W. Thielmann, eds.), pp. 43–48, Raven Press, New York.Google Scholar
  4. Baldwin, R. W., and Price, M. R., 1982, Neoantigen expression in chemical carcinogenesis, in: Cancer: A Comprehensive Treatise Etiology, Chemical and Physical Carcinogenesis ,Vol. 1, 2nd Ed. (F. F. Becker, ed.), pp. 507–548, Plenum Press, New York.Google Scholar
  5. Barker, W. C, and Dayhoff, M. O., 1982, Viral src gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. USA 79:2836–2839.PubMedGoogle Scholar
  6. Becker, F. F. (ed.), 1982, Cancer: A Comprehensive Treatise Etiology, Vol. 1–5 ,2nd Ed., Plenum Press, New York.Google Scholar
  7. Berenblum, I., 1982, Sequential aspects of chemical carcinogenesis: Skin, in: Cancer: A Comprehensive Treatise Etiology, Chemical and Physical Carcinogenesis, Vol. 1: 2nd Ed. (F. F. Becker, ed.), pp. 451 – 484, Plenum Press, New York.Google Scholar
  8. Bishop, J. M., 1987, Molecular biology of cancer, Science 235:305–311.PubMedGoogle Scholar
  9. Bister, K., and Jansen, H., 1986, Oncogenes in retroviruses and cell: Biochemical and molecular genetics, Adv. Cancer Res. 47:99–188.PubMedGoogle Scholar
  10. Bos, R. P., Koopman, J., Theuws, J., Kennis, H., and Henderson, P. Th., 1986, Appearance and reappearance of mutagens in urine from rats after oral administration of direct brown 95, due to coprophagy, Toxicology 39:85–89.Google Scholar
  11. Bowden, G. T., Giesselbach, B., and Fusenig, N. E., 1978, Post-replication repair of DNA in ultraviolet light-irradiated normal and malignantly transformed mouse epidermal cell cultures. Cancer Res. 38:2709–2718.PubMedGoogle Scholar
  12. Bridges, B. A., 1981, Some DNA-repair-deficient human syndromes and their implications for human health, Proc. R. Soc. London B 212:263–278.Google Scholar
  13. Brooks, A. L., Benjamin, S. A., James, R. K., and McClellan, R. O., 1982, Interaction of 144Ce and partial hepatectomy in the production of liver neoplasms in the Chinese hamster, Radiat. Res. 91:573–588.PubMedGoogle Scholar
  14. Caldwell, J., 1982, Conjugation reactions in foreign-compound metabolism: Definition, consequences, and species variations, Drug Metab. Rev. 13:745–777. Carroll, K. K., 1980, Lipids and carcinogenesis, J. Environ. Pathol. Toxicol. 3:253–271. Cerniglia, C. E., Freeman, J. P., Franklin, W., and Pack, L. D., 1982, Metabolism of benzidine and benzidine-congener based dyes by human, monkey and rat intestinal bacteria, Biochem. Biophys. Res. Comm. 107:1224–1229.Google Scholar
  15. Coffin, J. M., Varmus, H. E., Bishop, J. M., Essex, M., Hardy, W. D., Jr., Martin, G. S., Rosenberg, N. E., Scolnick, E. M., Weinberg, R. A., and Vogt, P. K., 1981, Proposal for naming host-cell derived inserts in retrovirus genomes, J. Virol. 40:953–957.PubMedGoogle Scholar
  16. Conney, A. H., Miller, E. C., and Miller, J. A., 1956, The metabolism of methylated aminoazo dyes: V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene, Cancer Res. 16:450–460.PubMedGoogle Scholar
  17. Cory, S., 1986, Activation of cellular oncogenes in hematopoietic cells by chromosome translocation, Adv. Cancer Res. 47:189–234.PubMedGoogle Scholar
  18. DeBethizy, J. D., Sherrill, J. M., Kickent, D. E., and Hamm, T. E., Jr., 1983, Effects of pectin-containing diets on the hepatic macromolecular covalent binding of 2,6-dinitro-[3H]toluene in Fischer 344 rats, Toxicol. Appl. Pharm. 69:369–376.Google Scholar
  19. Deutsch, W. A., and Linn, S., 1979, DNA binding activity from cultured human fibroblasts that is specific for partially depurinated DNA and that inserts purines into apurinic sites, Proc. Natl. Acad. Sci. USA 76:141– 144.PubMedGoogle Scholar
  20. Diamond, L., O’Brien, T. G., and Baird, W. M., 1980, Tumor promoters and the mechanism of tumor promotion, Adv. Cancer Res. 32:1–74.PubMedGoogle Scholar
  21. Doll, R., and Peto, R., 1981, The cause of cancer: Quantitative estimates of avoidable risks of cancer in the United States today, J. Natl. Cancer Inst. 66:1193–1308.Google Scholar
  22. Doolittle, R. F., Hunkapiller, M. W., Hood, L. E., Devare, S. G., Robbins, K. C., Aaronson, S. A., and Antoniades, H. N., 1983, Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor, Science 221:275–277.PubMedGoogle Scholar
  23. Dunphy, W. G., Delclos, K. B., and Blumberg, P. M., 1980, Characterization of specific binding of [3H]phorbol 12,13-dibutyrateand [3H]phorbol 12-myristate-13-acetate to mouse brain, Cancer Res. 40:3635–3641.Google Scholar
  24. Eisenstadt, E., Warren, A. J., Porter, J., Atkins, D., and Miller, J. H., 1982, Carcinogenic epoxides of benzo(a)pyrene and cyclopenta(cd)pyrene induce base substitutions via specific transversions, Proc. Natl. Acad. Sci. USA 79:1945–1949.PubMedGoogle Scholar
  25. Embleton, M. J., and Middle, J. G., 1981, Immune responses to naturally occurring rat sarcomas, Br. J. Cancer 43:44–52.PubMedGoogle Scholar
  26. Emerit, I., and Cerutti, P., 1982, The tumor promoter phorbol-12-myristate-13-acetate induces chromosome aberrations in human lymphocytes via indirect action, in: Mechanism of Chemical Carcinogenesis (C. C. Harris and P. A. Cerutti, eds.), pp. 495–498, Arthur R. Liss, New York.Google Scholar
  27. Farber, E., 1984, Chemical carcinogenesis: A current biological perspective, Carcinogenesis 5:1–5.PubMedGoogle Scholar
  28. Farber, E., and Cameron, R., 1980, The sequential analysis of cancer development, Adv. Cancer Res. 31:125– 226.PubMedGoogle Scholar
  29. Fidler, I. J., Gersten, D. M., and Hart, I. R., 1978, The biology of cancer invasion and metastasis, Adv. Cancer Res. 28:149–250.PubMedGoogle Scholar
  30. Folkman, J., and Klagsburn, M., 1987, Angiogenic factors, Science 235:442–446.PubMedGoogle Scholar
  31. Fujiwara, Y., and Tatsumi, M., 1976, Replicative bypass repair of ultraviolet damage to DNA of mammalian cells: Caffeine sensitive and caffeine resistant mechanisms, Mutat. Res. 37:91–110.PubMedGoogle Scholar
  32. Gerchman, L. L., and Ludlum, D. B., 1973, The properties of 06-methylguanine in templates for RNA polymerase, Biochim. Biophys. Acta 308:310–316.PubMedGoogle Scholar
  33. Goldman, P., 1978, Biochemical pharmacology of the intestinal flora, Ann. Rev. Pharmacol. Toxicol. 18:523– 539.Google Scholar
  34. Goldstein, B. D., Witz, G., Amoruso, M., Stone, D. S., and Troll, W., 1981, Stimulation of human poly morphonuclear leukocyte superoxide anion radical production by tumor promoters, Cancer Lett. 11:257– 262.PubMedGoogle Scholar
  35. Greenberger, J. S., Newberger, P. E., Karpas, A., and Moloney, W. C, 1978, Constitutive and inducible granulocyte-macrophage functions in mouse, rat and human myeloid leukemia-derived continuous tissue culture lines, Cancer Res. 38:3340–3348.PubMedGoogle Scholar
  36. Grunberger, D., and Weinstein, I. B., 1979, Conformational changes in nucleic acids modified by chemical carcinogens, in: Chemical Carcinogens and DNA (P. L. Grover ed.), pp. 59–93, CRC Press, Boca Raton, Florida. Guernsey, D. L., Ong, A., and Borek, C., Thyroid hormone modulation of X-ray-induced in vitro neoplastic transformation, Nature 288:591–592.Google Scholar
  37. Hart, I. R., and Fidler, I. J., 1980, Cancer invasion and metastasis, Q. Rev. Biol. 55:121–142.Google Scholar
  38. Hart, R. W., and Turturro, A., 1981, Evolution and longevity-assurance processes, Naturwissenschaften 68:552–557.PubMedGoogle Scholar
  39. Hart, R. W., Setlow, R. B., and Woodhead, A. D., 1977, Evidence that pyrimidine dimers in DNA can give rise to tumors, Proc. Natl. Acad. Sci. USA 74:5574–5578.PubMedGoogle Scholar
  40. Hart, R. W., Fu, P. P., and Chang, M. J. W., 1982, Comparative removal of polycyclic aromatic hydrocarbon-DNA adducts in vivo, in: Sixth International Symposium on Polynuclear Aromatic Hydrocarbons: Physical and Biological Chemistry (W. M. Cooke, A. J. Dennis, and G. L. Fisher, eds.), pp. 39–72, Battelle Press, Columbus, Ohio.Google Scholar
  41. Heppner, G. H., 1984, Tumor heterogenity, Cancer Res. 44:2259–2265.PubMedGoogle Scholar
  42. Herlyn, M., Steplewski, Z., Herlyn, D., and Koprowski, H., 1979, Colo-rectal carcinoma-specific antigen: detection by means of monoclonal antibodies, Proc. Natl. Acad. Sci. USA 76:1438.PubMedGoogle Scholar
  43. Hewitt, H. B., 1978, The choice of animal tumors for experimental studies of cancer therapy, Adv. Cancer Res. 27:149–200.PubMedGoogle Scholar
  44. Hurley, J. B., Simon, M. I., Teplow, D. B., Robishaw, J. D., and Gilman, A. G., 1984, Homologies between signal transducing G proteins and ras gene products, Science 226:860–862.PubMedGoogle Scholar
  45. Ingbar, S. H., Bauman, A., and Braverman, L. E., 1984, Studies of the effects of Chronic Erthyrosine Feeding on Various Aspects of Thyroid Hormone Economy in Rats. Submitted to the Food and Drug Administration as part of “Further studies on the thyroid effects of FD&C Red No. 3,” Dec. 4, 1984. FDA Color Additive Petition 96, Docket No. 76N-0366, Administrative Record Index # 299. Food and Drug Administration, Rockville, Maryland.Google Scholar
  46. Interagency Staff Group, 1986, Chemical carcinogens: A review of the science and its associated principles, Environ. Health Perspect. 67:201–282.Google Scholar
  47. Karin, M., Haslinge, A., Holtgreve, H., Richards, R. I., Krauter, P., Westphal, H. W., and Beato, M., 1984, Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene, Nature 308:513–519.PubMedGoogle Scholar
  48. Kelner, A., 1949, Effect of visible light on the recovery of Streptomyces griseus conida from ultraviolet irradiation injury, Proc. Natl. Acad. Sci. USA 35:73–79.PubMedGoogle Scholar
  49. Ketterer, B., 1980, Interactions between carcinogens and proteins, Br. Med. Bull. 36:71–78.PubMedGoogle Scholar
  50. Kitagawa, T., Hino, O., Nomura, K., and Sugano, H., 1984, Dose-response studies of the promoting and anticarcinogenic effects of phenobarbital and DDT in the rat hepatocarcinogenesis, Carcinogenesis 5:1643–1656.Google Scholar
  51. Klein, G., 1981, The role of gene dosage and genetic transpositions in carcinogenesis, Nature 294:313–318.PubMedGoogle Scholar
  52. Kraemer, K. H., Lee, M. M., and Scotto, J., 1982, Diseases of environmental-genetic interaction: Preliminary report on a retrospective study of neoplasia in 268 xeroderma pigmentosum patients, in: Environmental Mutagens and Carcinogens (T. Sugimura, S. Kondo, and H. Takebe, eds.), pp. 605–612, Arthur R. Liss, New York.Google Scholar
  53. Kriek, E., 1972, Persistent binding of a new reaction product of the carcinogen N-hydroxy-N-2-acety-laminofluorene with guanine in rat liver DNA in vivo, Cancer Res. 32:2042–2048.PubMedGoogle Scholar
  54. Kripke, M. L., 1974, Antigenicity of murine mouse skin tumors induced by ultraviolet light, J. Natl. Cancer Inst. 53:1333–1336.PubMedGoogle Scholar
  55. Kripke, M. L., 1979, Speculations on the role of ultraviolet radiation in the development of malignant melanoma, J. Natl. Cancer Inst. 63:541–548.PubMedGoogle Scholar
  56. Lam, L. K. T., Sparnins, V. L., Hochalter, J. B., and Wattenberg, L. W., 1981, Effects of 2- and 3-tert-butyl-4-hydroxyanisole on glutathione S-transferase and epoxide hydrolase activities and sulfhydryl levels in liver and forestomach of mice, Cancer Res. 41:3940–3943.PubMedGoogle Scholar
  57. Lee, W., Bookstein, R., Hong, F., Young, L., Shew, J., and Lee, E. Y., 1987, Human Retinoblastoma susceptibility gene: Cloning, identification and sequence, Science 235: 1394–1399.Google Scholar
  58. Lin, J.-K., Miller, J. A., and Miller, E. C, 1977, 2,3-Dihydro-2-(guan-7-yl)-3-hydroxy-aflatoxin B1, a major acid hydrolysis product of aflatoxin B1 -DNA or B1 -ribosomal RNA adducts formed in hepatic microsome-mediated reactions and in rat liver in vivo, Cancer Res. 37:4430–4438.Google Scholar
  59. Lindahl, T., and Nyberg, B., 1972, Rate of depurination of native deoxyribonucleic acid, Biochemistry 11:3610–3618.PubMedGoogle Scholar
  60. Lindahl, T., and Nyberg, B., 1972, Rate of depurination of native deoxyribonucleic acid, Biochemistry 11:3610–3618. Lindahl, T., Rydberg, B., Hjebnigren, T., Olsson, M., and Jacobson, A., 1982, Cellular defense mechanisms against alkylation of DNA, in: Molecular and Cellular Mechanisms of Mutagenesis ,(J. Lemontt and W. M. Generoso, eds.), pp. 89–102, Plenum Press, New York.Google Scholar
  61. Linn, S., Kuhnlein, U., and Deutsch, A., 1978, Enzymes from human fibroblasts for the repair of AP DNA, in: DNA Repair Mechanisms (P. C. Hanawalt, E. C. Friedberg, and C. F. Fox, eds.), pp. 199–203, Academic Press, New York.Google Scholar
  62. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., and Shafie, S., 1980, Metastatic potential correlates with enzymatic degradation of basement membrane collagen, Nature 284:67–68.PubMedGoogle Scholar
  63. Lipetz, P. D., Galsky, A. G., and Stephens, R. E., 1982, Relationship of DNA tertiary and quaternary structure to carcinogenic processes, Adv. Cancer Res. 36:165–210.PubMedGoogle Scholar
  64. Littlefield, N. A., Farmer, J. H., Gaylor, D. W.,and Sheldon, W. G., 1979a, Effects of dose and time in a long-term, low-dose carcinogenic study, J. Environ. Pathol. Toxicol. 3:17–34.Google Scholar
  65. Littlefield, N. A., Greenman, D. L., Farmer, J. H., and Sheldon, W. G., 1979b, Effects of continuous and discontinued exposure to 2-AAF on urinary bladder hyperplasia and neoplasia, J. Environ. Pathol. Toxicol. 3:35–54.Google Scholar
  66. Lu, A. Y. H., 1979, Multiplicity of liver drug metabolizing enzymes, Drug Metab. Rev. 10:187–208.PubMedGoogle Scholar
  67. Magee, P. N., 1977, The relationship between mutagenesis, carcinogenesis and teratogenesis, in: Progress in Genetic Toxicology (D. Scott, B. A. Bridges, and F. H. Sorbels, eds.), pp. 15–27, Elsevier/North Holland Biomedical Press, Amsterdam.Google Scholar
  68. Maher, V. M., Rowan, L. A., Silinskas, K. C., Kateley, S. A., and McCormick, J. J., 1982, Frequency of UV-induced neoplastic transformation of diploid human fibroblasts is higher in xeroderma pigmentosum cells than in normal cells, Proc. Natl. Acad. Sci. USA 79:2613–2617.PubMedGoogle Scholar
  69. Marks, F., and Furstenberger, G., 1984, Stages of tumor promotion in skin, IARC Sci. Pub. 56:13–22.Google Scholar
  70. Mc-Grath, J. P., Capon, D. J., Goeddewl, D. V., and Levinson, A. D., 1984, Comparative biochemical properties of normal and activated human ras p21 protein, Nature 310:644–649.Google Scholar
  71. McKhann, C. F., 1982, Tumor immunology: Past, present and future, in: Accomplishments in Cancer Research 1981 (J. G. Former and J. E. Rhoads, eds.) pp. 125–137, Lippincott, Philadelphia.Google Scholar
  72. Miao, R. M., Fieldsteel, A. H., and Fodge, D. W., 1978, Opposing effects of tumour promoters on erythroid differentiation, Nature 274:271–272.PubMedGoogle Scholar
  73. Miller, E. C, and Miller, J. A., 1976, The metabolism of chemical carcinogens to reactive electrophiles and their possible mechanism of action in carcinogenesis, in: Chemical Carcinogens (American Chemical Society Monograph, No. 173) (C. Searle, ed.), pp. 737–762, American Chemical Society, Washington, D.C.Google Scholar
  74. Mintz, B., and Fleischman, R., 1981, Teratocarcinoma and other neoplasmas as developmental defects in gene expression, Adv. Cancer Res. 34:214–278.Google Scholar
  75. Morgan, R. W., and Hoffmann, G. R., 1983, Cycasin and its mutagenic metabolites, Mutat. Res. 114:19–58.PubMedGoogle Scholar
  76. Murasaki, G., Zenser, T. Z., Davis, B. B., and Cohen, S. M., 1984, Inhibition by aspirin of N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide-induced bladder carcinogenesis and enhancement of forestomach car cinogenesis, Carcinogenesis 5:53–55.PubMedGoogle Scholar
  77. Nagasawa, H., and Little, J. B., 1979, Effect of tumor promoters, protease inhibitors, and repair processes on X-ray-induced sister chromatid exchanges in mouse cells, Proc. Natl. Acad. Sci. USA 76:1943–1947.PubMedGoogle Scholar
  78. Nishizuka, Y., 1986, Studies and perspectives of protein kinase C, Science 233:305–312.PubMedGoogle Scholar
  79. Peterson, A. R., Landolph, J. R., Peterson, H., and Heidelberger, C., 1978, Mutagenesis of Chinese hamster cells is facilitated by thymidine and deoxycytidine, Nature 276:508–510.PubMedGoogle Scholar
  80. Poste, G., and Nicolson, G. L., 1980, Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells, Proc. Natl. Acad. Sci. USA 77:399–403.PubMedGoogle Scholar
  81. Radman, M., Villani, G., Boiteux, S., Defais, M., Caillet-Fauquet, P., and Spadari, S., 1977, On the mechanism and genetic control of mutagenesis induced by carcinogenic mutagens, in: Origins of Human Cancer: Mechanisms of Carcinogenesis, Vol. 4 (J. D. Watson, H. Hiatt, eds.), pp. 903–922, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  82. Rovera, G., O’Brien, T. G., and Diamond, L., 1977, Tumor promoters inhibit spontaneous differentiation of Friend erythroleukemia cells in culture, Proc. Natl. Acad. Sci. USA 74:2894–2898.PubMedGoogle Scholar
  83. Sandberg, A. A., 1980, The Chromosomes in Human Cancer and Leukemia ,Elsevier/North-Holland, Amsterdam. Sap ,J., Munoz, A., Damm, K., Goldberg, Y., Ghysdael, J., Leutz, A., Beug, H., and Vennstrom, B., 1986, The c-erb-A protein is a high-affinity receptor for thyroid hormone, Nature 324:635–640.Google Scholar
  84. Schirrmacher, V., 1985, Cancer metastasis: Experimental approaches, theoretical concepts, and impacts for treatment strategies, Adv. Cancer Res. 43:1–74.PubMedGoogle Scholar
  85. Setlow, R. B., 1980, DNA repair pathways, in: DNA Repair and Mutagenesis in Eukaryotes (W. M. Generoso, M. D. Shelby, and F. J. de Serres, eds.), pp. 45–54, Plenum Press, New York.Google Scholar
  86. Sims, P., and Grover, P. L., 1974, Epoxides in polycyclic aromatic hydrocarbon metabolism and car cinogenesis, Adv. Cancer Res. 20165–274.PubMedGoogle Scholar
  87. Slaga, T. J., 1983, Overview of tumor promotion in animals, Environ. Health Perspect. 50:3–14.PubMedGoogle Scholar
  88. Stott, W. T., Reitz, R. H., Schumann, A. M., and Watanabe, P. G., 1981, Genetic and nongenetic events in neoplasia, Food Cosmet. Toxicol. 19:567–576.PubMedGoogle Scholar
  89. Strauss, B., 1985, Cellular aspects of DNA repair, Adv. Cancer Res. 45:45–106.PubMedGoogle Scholar
  90. Swenson, D. H., and Kadlubar, F. F., 1981, Properties of chemical mutagens and chemical carcinogens in relation to their mechanisms of action, in: Microbial Testers: Probing Carcinogenesis (I. C. Felkner, ed.), pp. 3–33, Dekker, New York.Google Scholar
  91. Tateishi, N., Higashi, T., Shinya, S., Naruse, A., and Sakamoto, Y., 1974, Studies on the regulation of glutathione level in rat liver, J. Biochem. (Tokyo) 75:93–103.PubMedGoogle Scholar
  92. Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aaronson, S., and Leder, P., 1982, Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt’s lymphoma and murine plasmacytoma cells, Proc. Natl. Acad. Sci. USA 79: 7837–7841.PubMedGoogle Scholar
  93. Terzaghi, M., and Little, J. B., 1976, X-radiation-induced transformation in a C3H mouse embryo-derived cell line, Cancer Res. 36:1367–1374.PubMedGoogle Scholar
  94. Thakker, D. R., Levin, W., Buening, M., Yagi, H., Lehr, R. E., Wood, A. W., Conney, A. H., and Jerina, D. M., 1981, Species-specific enhancement by 7,8-benzoflavone of hepatic microsomal metabolism of benzo(e)pyrene 9,10-dihydrodiol to bay-region diol-epoxide, Cancer Res. 41:1389–1396.PubMedGoogle Scholar
  95. Theofilopoulos, A. N., and Dixon, F. J., 1980, Immune complexes in human diseases: A review, Amer. J. Pathol. 100:531–594.Google Scholar
  96. Topal, M. D., and Baker, M.S., 1982, DNA precursor pool: A significant target for N-methyl-N-uitrosourea in C3H/10T1/2 clone 8 cells, Proc. Natl. Acad. Sci. USA 79:2211–2215.PubMedGoogle Scholar
  97. Trus, M. D., Sodoroski, J. G., and Haseltine, W. A., 1982, Isolation and purification of a human locus homologous to the transforming gene (v-fes) of feline sarcoma virus, J. Biol. Chem. 257:2730–2733.PubMedGoogle Scholar
  98. Turturro, A., and Hart, R. W., 1984, DNA repair mechanisms in aging, in: Comparative Biology of Major Age-Related Diseases: Current Status and Research Frontiers (D. G. Sciapelli and G. Migaki, eds.), pp. 19–45, Arthur R. Liss, New York.Google Scholar
  99. Van de Velde, C. J. H., Van Putten, L. M., and Zwaveling, A., 1977, A new metastasizing mammary carcinoma model in mice: Model characteristics and applications, Eur. J. Cancer 13:555–565.Google Scholar
  100. Verma, A. K., Conrad, E. A., and Boutwell, R. K., 1982, Differential effects of retinoic acid and 7,8-benzoflavone on the induction of mouse skin tumors by the complete carcinogenesis process and by the initiation-promotion regimen, Cancer Res. 42:3519–3525.PubMedGoogle Scholar
  101. Waring, M. J., 1981, DNA modification and cancer, Ann. Rev. Biochem. 50:159–192.PubMedGoogle Scholar
  102. Warren, B. A., 1978, Platelet-tumor cell interactions: Morphological studies, in: Platelets: A Multidisciplinary Approach (G. D. Gaetano and S. Garattini, eds.), pp. 427–445, Raven Press, New York.Google Scholar
  103. Wattenberg, L. W., 1980, Inhibitors of chemical carcinogens, J. Environ. Pathol. Toxicol. 3:35–52.PubMedGoogle Scholar
  104. Weinberg, R. A., 1982, Oncogenes of spontaneous and chemically induced tumors, Adv. Cancer Res. 36:149– 163.PubMedGoogle Scholar
  105. Weinstein, I. B., 1981, Current concepts and controversies in chemical carcinogenesis, J. Supramol. Struct. Cell Biochem. 17:99–120.PubMedGoogle Scholar
  106. Williams, R. T., 1959, Detoxification Mechanisms ,2nd Ed., Chapman and Hall, London.Google Scholar
  107. Young, J. F., and Kadlubar, F. F., 1982, A pharmacokinetic model to predict exposure of the bladder epithelium to urinary N-hydroxyarylamine carcinogens as a function of urine pH, voiding interval, and resorption, Drug. Metab. Dispos. 10:641–648.PubMedGoogle Scholar
  108. Zur Hausen, H., O’Neill, F. J., Freese, U. K., and Hecker, E., 1978, Persisting oncogenic herpesvirus induced by the tumor promoter TPA, Nature 272:373–375.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ronald W. Hart
    • 1
  • Angelo Turturro
    • 1
  1. 1.National Center for Toxicological ResearchFood and Drug AdministrationJeffersonUSA

Personalised recommendations