Structural vs Functional Limitations to Oxygen Transport: Is there a Difference?

  • James H. Jones
  • Richard H. Karas
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 227)


The flow of O2 through the mammalian respiratory system has been described as occurring down a cascade of transport steps (Taylor and Weibel, 1981): pulmonary ventilation, pulmonary diffusion, circulatory convection, peripheral tissue diffusion, and reduction of the O2 by cytochrome oxidases on the inner cristae of mitochondria. When rates of O2 consumption (\(\rm\dot{v}\)O2) are at their maximum (\(\rm\dot{v}\)O2max), over 90% of the O2 flowing through the respiratory system is consumed by mitochondria in cardiac and skeletal muscle tissues (Mitchell and Blomqvist 1971).


Respiratory System Elite Athlete Skeletal Muscle Tissue Adaptive Variation Fractional Limitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Conley, K.E., S.R. Kayar, K., Rösier, H. Hoppeler, E.R. Weibel, C.R. Taylor and O. Mathieu-Costello (1987). Adaptive variation in the mammalian respiratory system. III. Capillaries and their relationship to oxidative capacity. Respir. Physiol. 69:47–64.CrossRefGoogle Scholar
  2. di Prampero, P.E. (1985). Metabolic and circulatory limitations to VO2max at the whole animal level. J. Exp. Biol. 115:319–331.PubMedGoogle Scholar
  3. Heinrich, R. and T.A. Rapoport (1973). Linear theory of enzymatic chains; its application for the analysis of the cross-over theorem and of glycolysis of human erythrocytes. Acta Biol. Med. Ger. 31:479–494.PubMedGoogle Scholar
  4. Heinrich, R. and T.A. Rapoport (1974). A linear steady-state treatment of enzymatic chains. Eur. J. Biochem. 42:89–95.PubMedCrossRefGoogle Scholar
  5. Hill, A.V. and H. Lupton (1923). Muscular exercise, lactic acid, and the supply and utilization of oxygen. Quart. J. Med. 16:135–171.Google Scholar
  6. Hoppeler, H., P. Luthi, H. Claassen, E.R. Weibel and H. Howald (1973). The ultrastructure of the normal human skeletal muscle. Pflugers Arch. 344:217–232.PubMedCrossRefGoogle Scholar
  7. Kacser, H. (1983). The control of enzymes in vivo: elasticity analysis of the steady state. Biochem. Soc. Trans. 11:35–40.PubMedGoogle Scholar
  8. Kacser, H. and J. Burns (1973). The control of flux. Symp. Soc. Exp. Biol. 27:65–104.PubMedGoogle Scholar
  9. Kacser, H. and J. Burns (1979). Molecular democracy: who shares the controls? Biochem. Soc. Trans. 7:1149–1160.PubMedGoogle Scholar
  10. Karas, R.H., C.R. Taylor, J.H. Jones, S.L. Lindstedt, R.B. Reeves and E.R. Weibel (1987a). Adaptive variation in the mammalian respiratory system. VI. Flow of oxygen across the pulmonary gas exchanger. Respir. Physiol. 69:101–115.CrossRefGoogle Scholar
  11. Karas, R.H., C.R. Taylor, K. Roseler and H. Hoppeler (1987b). Adaptive variation in the mammalian respiratory system. IV. Limits to oxygen transport by the circulation. Respir. Physiol. 69:65–79.CrossRefGoogle Scholar
  12. Mitchell, J.H. and G. Blomqvist (1971). Maximal oxygen uptake. N. Engl. J. Med. 284:1018–1022.PubMedCrossRefGoogle Scholar
  13. Porteous, J.W. (1985). Enzyme catalysed fluxes in metabolic systems. Why control of such fluxes is shared among all components of the system. In: Gilles, R., ed. Circulation, Respiration and Metabolism. Springer-Verlag, New York, pp. 263–277.CrossRefGoogle Scholar
  14. Saltin, B. and P.D. Gollnick (1983). Skeletal muscle adaptability: significance for metabolism and performance. In: Handbook of Physiology. Skeletal Muscle, pp. 555–631. Am. Physiol. Society.Google Scholar
  15. Taylor, C.R. and E.R. Weibel (1981). Design of the mammalian respiratory system. I. Problem and strategy. Respir. Physiol. 44:1–10.PubMedCrossRefGoogle Scholar
  16. Taylor, C.R., E.R. Weibel, R.H. Karas and H. Hoppeler (1987). Adaptive variation in the mammalian respiratory system. VIII. Structural and functional design principles determining the limits to oxidative metabolism. Respir. Physiol. 69:117–127.CrossRefGoogle Scholar
  17. Verzar, F. (1912). The gaseous metabolism of striated muscle in warmblooded animals. J. Physiol. (Lond.) 44:243–258.Google Scholar
  18. Weibelr E.R. (1963). Morphometry of the human lung. Springer, Berlin.Google Scholar
  19. Weibel, E.R. (1984). The Pathway for Oxygen: Structure and Function in the Mammalian Respiratory System. Harvard Univ. Press: Cambridge.Google Scholar
  20. Weibel, E.R., L.B. Marques, M. Constantinopol, F. Doffey, P. Gehr and C.R. Taylor (1987). Adaptive variation in the mammalian respiratory system. V. The pulmonary gas exchanger. Respir. Physiol. 69:81–100.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • James H. Jones
    • 1
  • Richard H. Karas
    • 2
  1. 1.Department of Physiological Sciences School of Veterinary MedicineUniversity of CaliforniaDavisUSA
  2. 2.Concord Field Station, Museum of Comparative ZoologyHarvard UniversityBedfordUSA

Personalised recommendations