Advertisement

Skeletal Muscle Mitochondria: The Aerobic Gate?

  • Stan L. Lindstedt
  • Dominic J. Wells
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 227)

Abstract

At an animal’s maximum aerobic capacity (\(\rm\dot{v}\)O2max), the O2 flowing through the respiratory system is consumed by a functionally exclusive sink, skeletal muscle mitochondria. Thus, O2 consumption will never exceed the muscles demand. If the system is ideally designed, structures upstream to the skeletal muscle O2 sink must be built to insure adequate O2 delivery to the working muscle. There are a number of structure-function solutions available to supply the demanded to the muscle; these have been found to vary, often ontogenetically, with hypoxia, training, etc. But there is one relationship that is invariant: Total O2 uptake can be predicted by the total (active) skeletal muscle mitochondrial volume. In aerobic and sedentary animals, across a range of body sizes, maximum (in vivo) mitochondrial O2 consumption is constant among mammals (at approximately 2000 O2 molecules per square micron of inner mitochondrial membrane per second). Because the volume of mitochondria is one of the most plastic of all respiratory structures, we interpret this relationship as suggesting that skeletal muscle mitochondria alone sets the demand for O2 and, thus, the volume of skeletal muscle mitochondria dictates an animal’s maximum aeorbic capacity.

Keywords

Respiratory System Aerobic Capacity Muscle Mitochondrion Maximal Aerobic Power Aerobic Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, P. and B. Saltin (1985) Maximal perfusion of skeletal muscle in man. J. Physiol. (London) 366:233–249.Google Scholar
  2. Buick, F.J., N. Gledhill, A.B. Froese, L. Spriet and E.C. Meyes (1980). Effect of induced erythrocythemia on aerobic work capacity. J. Appl. Physiol. 48:636–642.PubMedGoogle Scholar
  3. Celsing, F., J. Nystrom, P. Pihlstedt, B. Werner and B. Ekblom (1986). Effect of long-term anemia and retransfusion on central circulation during exercise. J. Appl. Physiol. 4:1358–1362.Google Scholar
  4. Celsing, F., J. Svedenhag, P. Pihlstedt and B. Ekblom (1987). Effects of anemia and stepwise-induced polycythaemia on maximal aerobic power in individuals with high and low haemoglobin concentrations. Acta Physiol. Scand. 129:47–54.PubMedCrossRefGoogle Scholar
  5. Coyle, E.F., M.K. Hemmert and A.R. Coggan (1986). Effects of detraining on cardiovascular responses to exercise: role of blood volume. J. Appl. Physiol. 60:95–99.PubMedCrossRefGoogle Scholar
  6. di Prampero, P.E. (1985) Metabolic and circulatory limitations to VO2max at the whole animal level. J. Exp. Biol. 115:319–331.PubMedGoogle Scholar
  7. Ekblom, B. (1986) Factors determining maximal aerobic power. Acta Physiol. Scand. 128:15–19.Google Scholar
  8. Ekblom, B., A.N. Goldbarg and B. Gullbring (1972). Response to exercise after blood loss and reinfusion. J. Appl. Physiol. 33:175–180.PubMedGoogle Scholar
  9. Ekblom, B. and L. Hermansen (1968). Cardiac output in athletes. J. Appl. Physiol. 25:619–625.PubMedGoogle Scholar
  10. Ekblom, B., R. Hout, E.M. Stein and A.T. Thorstensson (1975). Effect of changes in arterial oxygen content on circulation and physical performance. J. Appl. Physiol. 39:71–75.PubMedGoogle Scholar
  11. Ekblom, B., G. Wilson and P.-O. Astrand (1976). Central circulation during exercise after venesection and reinfusion of red blood cells. J. Appl. Physiol. 40:379–383.PubMedGoogle Scholar
  12. Farrell, P.A., A.B. Gustafson, T.L. Garthwaite, R.K. Kalkhoff, A.W. Cowley, Jr. and W.P. Morgan (1986). Influence of endogenous opioids on the response of selected hormones to exercise in humans. J. Appl. Physiol. 61:1051–1057.PubMedGoogle Scholar
  13. Hagberg, J.M., W.K. Allen, D.R. Seals, B.F. Hurley, A.E. Ali and J.O. Holloszy (1985). A hemodynamic comparison of young and older endurance athletes during exercise. J. Appl. Physiol. 58:2041–2046.PubMedGoogle Scholar
  14. Holmgren, A. and P.-O. Astrand (1966). DL and the dimensions and functional capacities of the 0 transport system in humans. J. Appl. Physiol. 21:1463–1470.PubMedGoogle Scholar
  15. Hoppeler, H., H. Howald, K.E. Conley, S.L. Lindstedt, H. Classsen, P. Vock and E.R. Weibel (1985) Endurance training in humans: Aerobic capacity and structure of skeletal muscle. J. Appl. Physiol. 59:320–327.Google Scholar
  16. Hoppeler, H., S.L. Lindstedt, E. Uhlmann, A. Niesel, L.M. Cruz-Orive and E.R. Weibel (1984). Oxygen consumption and the composition of skeletal muscle tissue after training and inactivation in the European woodmouse (Apodemus sylvaticus). J. Comp. Physiol. B. 155:51–61.Google Scholar
  17. Hoppeler, H. and S.L. Lindstedt (1985) Malleability of skeletal muscle tissue in overcoming limitations: Structural elements. J. Exp. Biol. 115:355–364.PubMedGoogle Scholar
  18. Kanstrup, I.-L. and B. Ekblom (1982). Acute hypervolemia, cardiac performance and aerobic power during exercise. J. Appl. Physiol. 52:1186- 1192.PubMedGoogle Scholar
  19. Kanstrup, I.-L. and B. Ekblom (1984). Blood volume and hemoglobin concentration as determinants of maximal aerobic power. Med. Sci. Sport Exercise 16:256–263.Google Scholar
  20. Lindstedt, S.L., H. Hoppeler, K.M. Bard and H.A. Thronson, Jr. (1985a) Estimate of muscle shortening rate during locomotion. Am. J. Physiol. 249:R699-R703.PubMedGoogle Scholar
  21. Lindstedt, S.L., J.H. Jones, H. Hoppeler and H.A. Thronson, Jr. (1985b). Determinants of structure/function relations in the respiratory system: sufficiency vs. limitation. Physiologist 28:342 (abstract).Google Scholar
  22. Lindstedt, S.L. and J.H. Jones (1987). Syramorphosis: the concept of optimal designed. In, M. Feder, A.F. Bennett, W. Burrgren and R. Huey (eds.), New Directions in Physiological Ecology. Cambridge University Press. (In press).Google Scholar
  23. Lindstedt, S.L., D.J. Wells, J.H. Jones, H. Hoppeler and H.A. Thronson, Jr. (1988). Limitations to aerobic performance in mammals: interaction of structure and demand. Int. J. Sports Med. In press.Google Scholar
  24. Olez, O., H. Howald, P.E. diPrampero, H. Hoppeler, H. Claassen, R. Jerri, A. Buehlmann, G. Ferretti, J-C. Brickner, A. Veicsteinas, M. Gussoni and P. Cerretelli (1986). Physiological profile of world-class high- altitude climbers. J. Appl. Physiol. 60:1734–1742.Google Scholar
  25. Robertson, R.J., R. Gilcher, R.F. Metz, G.S. Skrinar, T.G. Allison, H.T. Bahnsen, R.A. Abbott, R. Becker and J.E. Panel (1982). Effect of induced erythrocythemia on hypoxia tolerane during physical exercise. J. Appl. Physiol. 53:490–495.PubMedCrossRefGoogle Scholar
  26. Robertson, R.J., R. Gilcher, K.F. Metz, C.J. Caspersen, T.G. Allison, R.A. Abbott, G.S. Skrinar, J.R. Krause and P.A. Nixon (1984). Hemoglobin concentration and aerobic work capacity in women following induced erythrocytemia. J. Appl. Physiol. 568–575.Google Scholar
  27. Saltin, B. (1985) Hemodynamic adaptations to exercise. Am. J. Physiol. 55:42D-47D.Google Scholar
  28. Saltin, B. and P.D. Gollnick (1983) Skeletal muscle adaptability: significance for metabolism and performance. Handbook of Physiology Skeletal muscle. L.D. Peachy, R.H. Adrian and S.R. Geiger (eds.), Williams & Wilkins, Baltimore, pp. 555–631.Google Scholar
  29. Spriet, L.L., N. Gledhill, A.B. Froese and D.L. Wilkes (1986) Effect of graded erythrocytemia on cardiovascular and metabolic responses to exercise. J. Appl. Physiol. 61:1942–1948.PubMedGoogle Scholar
  30. Svedenhag, J., A. Martinsson, B. Ekblom and P. Hjemdahl (1986). Altered cardiovascular responsiveness to adrenaline in endurance-trained subjects. Acta. Physiol. Scand. 126:539–550.PubMedCrossRefGoogle Scholar
  31. Taylor, C.R. (1987). Structural and Functional limits to oxidative metabolism: Insight from scaling. Annu. Rev. Physiol. 49:135–146.PubMedCrossRefGoogle Scholar
  32. Taylor, C.R. and E.R. Weibel (1981) Design of the mammalian respiratory system. I. Problem and strategy. Respir. Physiol. 44:1–10.PubMedCrossRefGoogle Scholar
  33. Thomson, J.M., J.A. Stone, A.D. Ginsburg and P. Hamilton (1982). Oxygen transport during exercise following blood reinfusion. J. Appl. Physiol. 1213–1219.Google Scholar
  34. Tipton, C.M. (1986) Determinants of \(\rm\dot{v}\) O2max: Insights gained from non-human species. Acta Physiol. Scand. 128:33–43.CrossRefGoogle Scholar
  35. Withers, R.T., W.M. Sherman, J.M. Miler and D.L. Costill (1981) Specificity of the anaerobic threshold in endurance trained cyclists and runners. Eur. J. Appl. Physiol. 47:93–104.CrossRefGoogle Scholar
  36. Woodson, R.D., R.E. Wills and C. Lenfant (1978). Effect of acute and established anemia on transport at rest, submaximal and maximal workload. J. Appl. Physiol. 44:36–43.PubMedGoogle Scholar
  37. Verzar, F. (1912) The gaseous metabolism of striated muscle in warm-blooded animals. J. Physiol. (Lond.) 44:243–258.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Stan L. Lindstedt
    • 1
  • Dominic J. Wells
    • 1
  1. 1.Department of Zoology and PhysiologyUniversity of WyomingLaramieUSA

Personalised recommendations