Advertisement

Red Cell Properties and Optimal Oxygen Transport

  • Robert M. Winslow
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 227)

Abstract

It is clear that the oxygen-binding behavior of hemoglobin can affect overall oxygen transport, because certain genetic alterations in the molecule may lead to polycythemia (Winslow and Ander son, 1982). Furthermore, an extreme left-shift in the oxygen equilibrium curve (OEC) caused by severe respiratory alkalosis was an essential feature in oxygen transport on the summit of Mt. Everest (Winslow et al., 1984), confirming the importance of blood oxygen affinity.

Keywords

Cardiac Output Oxygen Affinity Transport Optimization Mixed Venous Blood Chronic Mountain Sickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adair, G.S. (1925). The hemoglobin system VI. The oxygen dissociation curve of hemoglobin. J. Biol. Chem. 63:529–545.Google Scholar
  2. Asmussen, E. and M. Nielsen (1956). Physiological dead space and alveolar gas pressures at rest and during muscular exercise. Acta Physiol. Scand. 38:1–21.PubMedCrossRefGoogle Scholar
  3. Aste-Salazar, H. and A. Hurtado (1944). The affinity of hemoglobin for oxygen at sea level and at high altitudes. Am. J. Cardiol. 142:733- 743.Google Scholar
  4. Balke, B. (1964). Work capacity and its limiting factors at high altitude. In:The Physiological Effects of High Altitude,W.H. Weine (ed). New York: Macmillanr pp. 233–247.Google Scholar
  5. Barcroftf J., C.A. Binger, A.V. Bock, J.H. Doggart, H.S. Forbes, G. Harrop, J.C. Meakins and A.C. Redfield (1923). Observations upon the effect of high altitude on the physiological processes of the human body carried out in the Peruvian Andes chiefly at Cerro de Pasco. Phil. Trans. Royal Soc. London Ser B. 211:351–480.CrossRefGoogle Scholar
  6. Bencowitz, H.Z., P.D. Wagner and J.B. West (1982). Effect of change in P50 on exercise tolerance at high altitude: a theoretical study. J. Appl. Physiol. 53:1487–1495.Google Scholar
  7. Bidani, A. and E.D. Crandall (1978). Slow postcapillary changes in blood pH in vivo: titration with acetazolamide. J. Appl. Physiol. 45:565–573.PubMedGoogle Scholar
  8. Bidani, A., E.E. Crandall and R.E. Forster (1978). Analysis of postcapillary pH changes in blood in vivo after gas exchange. J. Appl. Physiol. 44:770–781.PubMedGoogle Scholar
  9. Brown, E.G., R.W. Krouskop, F.E. McDonnell, C.C. Monge, F. Sarnquist, N.J. Winslow and R.M. Winslow (1985). Simultaneous and continuous measurement of breath-by-breath oxygen uptake and arterial-venous oxygen content. J. Appl. Physiol. 58:1138–1139.Google Scholar
  10. Buick, F.J., N. Gledhill, A.B. Froese, L. Spriet and E.C. Meyers (1980). Effect of induced erythrocythemia on aerobic work capacity. J. Appl. Physiol. 48:636–642.PubMedGoogle Scholar
  11. DeGraff, A.C., R.F. Grover, R.L. Johnson, J.W. Hammond and J.M. Miller (1970). Increased diffusing capacity of the lung in persons native to 3,100 in North America. J. Appl. Physiol. 29:71–76.PubMedGoogle Scholar
  12. Dempsey, J.A., P.G. Hanson and K.S. Henderson (1984). Exercise-induced arterial hypoxemia in healthy human subjects at sea level. J. Physiol. 355:161–175.PubMedGoogle Scholar
  13. Eaton, J.W., T.D. Skelton and E. Berger (1974). Survival at extreme altitude: Protective effect of increased hemoglobin-oxygen affinity. Science 185:743–744.CrossRefGoogle Scholar
  14. Erslev, A. (1981). Erythroid adaptation to altitude. Blood Cells 7:495- 508.PubMedGoogle Scholar
  15. Guyton, A.C., C.E. Jones and T.G. Coleman (1973). Cardiac Output and Its Regulation.2nd edition, Philadelphia: Saunders.Google Scholar
  16. Hebbel, R.P., J.W. Eaton, R.S. Kronenberg, E.D. Zanjani, L.G. Moore and E.M. Berger (1978). Human llamas: Adaptation to altitude in subjects with high hemoglobin oxygen affinity. J. Clin. Invest. 62:593–600.PubMedCrossRefGoogle Scholar
  17. Hill, E.P., G.G. Power and R.D. Gilbert (1977). Rate of pH changes in blood plasma in vitro and in vivo. J. Appl. Physiol. 42:928–934.PubMedGoogle Scholar
  18. Jones, N.L., E.J.M. Campbell, R.H.T. Edwards and D.G. Robertson (1975). Clinical Exercise Testing. Philadelphia: W.B. Saunders.Google Scholar
  19. Kelman, G.R. (1966). Calculation of certain indices of cardio-pulmonary function using a digital computer. Respir. Physiol. 1:335–343.PubMedCrossRefGoogle Scholar
  20. Kelman, G.R. (1967). Digital computer procedure for the conversion of PCO2 into blood CO content. Respir. Physiol. 3:111–115.PubMedCrossRefGoogle Scholar
  21. Neville, J.R. (1976). Altered heme-heme interaction and tissue-oxygen supply: A theoretical analysis. Br. J. Haem. 34:387–395.CrossRefGoogle Scholar
  22. Pugh, L.G.C.E. (1964). Cardiac output in muscular exercise at 5800 (19,000 feet), J. Appl. Physiol. 19:441–447.Google Scholar
  23. Roughton, F.J.W. and R.E. Forster (1957). Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl. Physiol. 11:290–302.PubMedGoogle Scholar
  24. Staub, N.C., J.M. Bishop and R.E. Forster (1962). Importance of diffusion and chemical reaction rates in O2 uptake in the lung. J. Appl. Physiol. 17:21–27.PubMedGoogle Scholar
  25. Thomas, L.J. (1972). Algorithms for selected blood acid-base and blood calculations. J. Appl. Physiol. 33:154–158.PubMedGoogle Scholar
  26. Vandegriff, K.D. and J.S. Olson (1985). Morphological and physiological factors affecting oxygen uptake and release by red blood cells. J. Biol. Chem. 259:12619–12627.Google Scholar
  27. VanderElst, C. and J. Kreukniet (1982). Some aspects of the oxygen transport in patients with chronic obstructive lung diseases and respiratory insufficiency. Respiration 43:336–343.CrossRefGoogle Scholar
  28. Wagner, P.D. (1977). Diffusion and chemical reaction in pulmonary gas exchange. Physiol. Rev. 57:257–312.PubMedGoogle Scholar
  29. West, J.B.r P. H. Hackettr K. H. Maret, J. S. Milledge, R. M. Peters, C.J. Pizzo and R.M. Winslow (1983). Pulmonary gas exchange on the summit of Mt. Everest. J. Appl. Physiol. 55:678–687.PubMedGoogle Scholar
  30. Winslow, R.M. (1986). A model for red cell uptake. International J. Clin. Monitor. Comput. 2:81–93.CrossRefGoogle Scholar
  31. Winslow, R.M. and W.F. Anderson (1982). The hemoglobinopathies. In:The Metabolic Basis of Inherited Disease, J.B. Stanbury (ed): 5th edition, pp. 1666–1710.Google Scholar
  32. Winslow, R.M. and C.C. Monge (1986). Hypoxia, Polycythemia, and Chronic Mountain Sickness.Baltimore: Johns Hopkins University Press.Google Scholar
  33. Winslow, R.M., C.C. Monge, E.G. Brown, H.G. Klein, F. Sarnquist and N.J. Winslow (1985). The effect of hemodilution on transport in high- altitude polycythemia. J. Appl. Physiol. 59:1495–1502.PubMedGoogle Scholar
  34. Winslow, R.M., C.C. Monge, N.J. Statham, C.G. Gibson, S. Charache, J. Whittembury,O. Moran and R.L. Berger (1981). Variability of oxygen affinity of blood: human subjects native to high altitude. J. Appl. Physiol. 51:1411–1416.PubMedGoogle Scholar
  35. Winslow, R.M., M. Samaja and J.B. West (1984). Red cell function at extreme. altitude on Mount Everest. J. Appl. Physiol. 56:109–116.PubMedGoogle Scholar
  36. Winslow, R.M., M. Samaja, N.J. Winslow, L. Rossi-Bernardi and R. I. Shrager (1983). Simulation of the continuous equilibrium curve over the physiologic range of pH, 2,3-diphosphoglycerate, and pCO2. j. Appl. Physiol. 54:524–529.PubMedCrossRefGoogle Scholar
  37. Winslow, R.M., M.L. Swenberg, R.L. Berger, R.I. Shrager, M. Luzzana, M. Samaja and L. Rossi-Bernardi (1977). Oxygen equilibrium curve of normal human blood and its evaluation by Adair’s equation. J. Biol. Chem. 252:2331–2337.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Robert M. Winslow
    • 1
  1. 1.Blood Research DivisionLetterman Army Institute of ResearchPresidio of San FranciscoUSA

Personalised recommendations