High Field Magnetotransport: Lectures I and II: Analysis of Shubnikov de Haas Oscillations and Parallel Field Magnetotransport

  • R. J. Nicholas
Part of the NATO ASI Series book series (NSSB, volume 170)


The study of high field magnetotransport, and in particular the Shubnikov-de Haas effect, is one of the most useful and direct ways of characterising semiconductor heterostructures. At low temperatures a two dimensional gas of carriers bound in a heterostructure acts like a metal with a small Fermi energy, typically of order 10-100 meV. The magnetic field causes a quantisation of the free carrier states into a ladder of Landau levels. Changing the magnetic field sweeps the levels through the Fermi energy causing the familiar oscillations in the magnetoresistance, known as the Shubnikov-de Haas effect. This phenomenon was first used by Fowler et al,1 in the first demonstration of the existence of a two- dimensional gas of electrons bound at the surface of a (100) silicon MOSFET. The periodicity of the oscillations is directly proportional to the carrier concentration bound in the layer, and is independent of the number of layers which may be present. Since the cyclotron motion induced by the field is in the plane perpendicular to its direction, this means that a two-dimension- al system is sensitive only to the component of field parallel to the surface normal, so that rotation of the sample relative to the field can be used to provide a very simple and direct proof of the two-dimensional nature of any system under investigation.


Carrier Concentration Landau Level Accumulation Layer Hall Voltage Hall Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.B. Fowler, F.F. Fung, W.E. Howard and P.J. Stiles, Phys. Rev. Lett. 16 901 (1966).ADSCrossRefGoogle Scholar
  2. 2.
    K. von Klitzing, G. Dorda and M. Pepper, Phys. Rev. Lett. 45 494 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    R.B. Dingle, Proc. R. Soc. London, Ser. A211 500 (1952).ADSMATHCrossRefGoogle Scholar
  4. 4.
    R.J. Nicholas, R.J. Haug, K. von Klitzing and G. Weimann, Phys. Rev. B, to be published (1987).Google Scholar
  5. 5.
    J.C. Portal, R.J. Nicholas, M.A. Brummell, A.Y. Cho, K.Y. Cheng and T.P. Pearsall, Solid State Commun. 43 907 (1982).ADSCrossRefGoogle Scholar
  6. 6.
    M. Razeghi, J.P. Duchemin, J.C. Portal, L. Dmowski, G. Remenyi, R.J. Nicholas and A. Briggs, Appl. Phys. Lett. 48 712 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    J. Singleton, R.J. Nicholas, F. Nasir and C.K. Sarkar, J. Phys. C: Solid State Phys. 19 35 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    W. Zhao, F. Koch, J. Ziegler and H. Maier, Phys. Rev. B31 2416 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    T. Ando, J. Phys. Soc. Japan 54 2676 (1985).CrossRefGoogle Scholar
  10. 10.
    Y. Takada, K. Arai, N. Uchimura and Y. Vemura, J. Phys. Soc. Japan 49 1851 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    T. Ando, A. Fowler and F. Stern, Rev. Mod. Physics 54 437 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    H. Reisinger and F. Koch, Surf. Sci. 170 397 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    F. Nasir, J. Singleton and R.J. Nicholas, to be published (1987).Google Scholar
  14. 14.
    J.J. Harris, D.E. Lacklison, C.T. Foxon, F.M. Selten, A.M. Selten, A.M. Suckling, R.J. Nicholas and K.W.J. Bornham, to be published (1987).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. J. Nicholas
    • 1
  1. 1.Clarendon LaboratoryOxfordUK

Personalised recommendations