Advertisement

Thermodynamic and Magneto-Optic Investigations of the Landau Level Density of States for 2D Electrons

  • E. Gornik
Part of the NATO ASI Series book series (NSSB, volume 170)

Abstract

In a 2-dimensional electron system (2DES) a magnetic field perpendicular to the plane of electrical confinement leads to full quantization of the electron motion. The energy spectrum consists of sharp Landau levels (LL) separated by the cyclotron energy ħωc.

Keywords

Magnetic Field Filling Factor Cyclotron Resonance Landau Level Background Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Gornik, R. Lassnig, G. Strasser, H.L. Stoermer, A.C. Gossard, W. Wiegmann, Specific heat of two-dimensional electrons in GaAs-GaAlAs multilayers, Phys.Rev.Lett. 54: 1820 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    J.P. Eisenstein, H.L. Stoermer, V. Narayanamurti, A.Y. Cho, A.C. Gossard, and C.W. Tu, Density of states and de Haas-van Alphen effect in two-dimensional electron systems, Phys.Rev.Lett., 55: 875 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    E. Stahl, D. Weiss, G. Weimann, K. v.Klitzing, K. Ploog, Density of states of a 2D electron gas in a strong magnetic field, J.Phys.C, 18: L783 (1985)Google Scholar
  4. 4.
    V. Mosser, D. Weiss, K. v.Klitzing, K. Ploog, G. Weimann, Density of states of GaAs-AlGaAs heterostructures dediced from temperature dependent magneto-capacitance measurements, Solid State Commun., 58: 5 (1986).Google Scholar
  5. 5.
    T. Ando, Y. Uemura, Theory of quantum transport in a 2D electron system under magnetic fields, Characteristics of level broadening and transport under strong fields, J.Phys.Soc.Japan, 36: 959 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    R. Lassnig, E. Gornik, Calculation of the cyclotron resonance linewidth in GaAs-AlGaAs heterostructures, Solid State Commun., 47: 959 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    R.R. Gerhardts, Path-integral approach to the 2D magneto conductivity problem, Z.Phys.B, 21:275 (1975) and Surf.Sci., 58: 227 (1976).Google Scholar
  8. 8.
    F. Wegner, Exact density of states for lowest Landau level in white noise potential superfield representation for interacting systems, Z.Phys.B, 51: 279 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    E. Brezin, D.I. Gross, C. Itzykson, Density of states in the presence of a strong magnetic field and random impurities, Nuclear Phys., B235: 24 (1984).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    T. Ando, Y. Murayama, Landau-level broadening in GaAs/AlGaAs heterojunctions, J.Phys.Soc.Japan, 53: 693 (1985).Google Scholar
  11. 11.
    R.R. Gerhardts, V. Gudmundsson, Statistical model for inhomogeneities in a two-dimensional electron gas implying a background density of states between Landau levels, Phys. Rev. B, 34: 2999 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    V. Gudmundsson, R.R. Gerhardts, Interpretation of experiments implying density of states between Landau levels of a 2DEG by a statistical model for inhomogeneities, Phys.Rev. B, to be published (preprint).Google Scholar
  13. 13.
    E. Gornik, Far infrared light emitters and detectors, Physica 127B: 95 (1984).CrossRefGoogle Scholar
  14. 14.
    W. Zawadzki and R. Lassnig, Specific heat and magneto-thermal oscillations of two-dimensional electron gas in a magnetic field, Solid State Commun., 56: 537 (1984).CrossRefGoogle Scholar
  15. 15.
    E. Gornik, R. Lassnig, G. Strasser, H.L. Stoermer, A.C. Gossard, Landau level density of states through specific heat in GaAs/GaAlAs multilayers, Surf.Sci. 170: 277 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    W. Zawadzki, R. Lassnig, Magnetization, specific heat, magneto- thermal effect and thermoelectric power of two-dimensional electron gas in a quantizing magnetic field, Surf.Sci. 142: 225 (1984).ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Eisenstein, High precision torsional magnetometer: Application to 2D electron systems, Appl.Phys.Lett., 46: 695 (1985).ADSCrossRefGoogle Scholar
  18. 18.
    T.P. Smith, B.B. Goldberg, P.J. Stiles, M. Heiblum, Direct measurement of the density of states of a two-dimensional electron gas, Phys.Rev.B, 32: 2696 (1985).ADSCrossRefGoogle Scholar
  19. 19.
    D. Weiss, K. v.Klitzing, V. Mosser, Density of states of landau levels from activated transport and capacitance experiments, Springer Series in Solid States Sciences, 67: 204 (1986).Google Scholar
  20. 20.
    T.W. Hickmott, Fractional quantization in ac conductance of AlxGa1-xAs capacitors Phys.Rev.Lett., 57: 751 (1986).Google Scholar
  21. 21.
    T.P. Smith, W.I. Wang, P.J. Stiles, The two-dimensional density of states at fractional filling factors, Springer Series in Solid State Sciences, 71: 173 (1987).CrossRefGoogle Scholar
  22. 22.
    I.V. Kukushkin, V.B. Timofeev, Direct determination of the state density of 2D electrons in a transverse magnetic field, JETP Lett., 43: 499 (1986).ADSGoogle Scholar
  23. 23.
    V.M. Pudalov, S.G. Semenchinsky, Density of states for a two-dimensional electron Landau band in Si Mosfet, Solid State Commun., 55: 593 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    Th. Englert, J.C. Maan, Ch. Uihlein, D.C. Tsui, A.C. Gossard, Oscillations of the cyclotron resonance linewidth with Landau level filling factor in GaAs/AlxGa1-xAs heterostructures, Physica, 117B & 118B: 631 (1983).Google Scholar
  25. 25.
    W. Scidenbusch, G. Lindemann, R. Lassnig, J. Edlinger, E. Gornik, Cyclotron resonance studies of screening and polaron effects in GaAs-AlGaAs heterostructures, Surf.Sci.. 142: 375 (1984).ADSCrossRefGoogle Scholar
  26. 26.
    R. Lassnig, W. Scidenbusch, E. Gornik, G. Weimann, Landau level width and cyclotron resonance in 2D systems, in: “Proc. of the 18th Int. Conf. on The Physics of Semiconductors, Stockholm”, O. Engström, ed., World Scientific, Singapore (1987).Google Scholar
  27. 27.
    G.L. Rikken, H.P. Wyder, G. Weimann, W. Schlapp, R.E. Horstman, J. Wolter, Anomalous cyclotron resonance linewidth in hetero- junctions displaying the fractional quantum Hall effect, Surf.Sci., 170 (1986).Google Scholar
  28. 28.
    E. Gornik, W. Scidenbusch, R. Lassnig, H.L. Stoermer, A.C. Gossard, W. Wiegmann, FIR investigations of GaAs/GaAlAs heterostructures, Springer Series in Solid State Sciences, 53: 60 (1984).CrossRefGoogle Scholar
  29. 29.
    B. Bastard, Hydrogenic impurity states in quantum well structures, Phys.Rev.B, 24: 4714 (1981).ADSCrossRefGoogle Scholar
  30. 30.
    R.L. Greene, K.K. Bajaj, Energy levels of hydrogenic impurity states in GaAs-Ga1-xAlxAs quantum well structures, Solid State Commun., 45: 825 (1983).ADSCrossRefGoogle Scholar
  31. 31.
    N.C. Jarosik, B.D. McCombe, B.V. Shanabrook, I. Comas,I. Ralston, and G. Wicks, Binding of shallow donor impurities in quantum well structures, Phys.Rev.Lett., 54: 1283 (1985).ADSCrossRefGoogle Scholar
  32. 32.
    J.L. Robert, A. Raymond, L. Konczewicz, C. Bousequet, W. Zawadzki, F. Alexandre, I.M. Masson, J.P. Andre, P.M. Frijlink, Magneto-impurities and quantum wells, Phys.Rev.B, 33: 5935 (1986).ADSCrossRefGoogle Scholar
  33. 33.
    A. Raymond, J.P. Andre, The zero resistance state in GaAs-GaAlAsScihe terojunctions: evidence of a nearest-neighbour hopping process, Phys.Rev., to be published.Google Scholar
  34. 34.
    D. Heitmann, M. Ziesmann, L.L. Chang, Cyclotron resonance oscillations in InAs quantum wells, Phys. Rev. B, 34: 7463 (1986).CrossRefGoogle Scholar
  35. 35.
    R. Lassnig, W. Scidenbusch, E. Gornik, G. Weimann, Landau level width and cyclotron resonance in 2D systems, in: “Proc. of the 18th Int. Conf. on The Physics of Semiconductors, Stockholm”, O. Engström, World Scientific, Singapore (1987), p. 593.Google Scholar
  36. 36.
    F. Stern and W.E. Howard, Properties of semiconductor surface inversion layers in the electric quantum limit, Phys.Rev., 163: 816 (1967).ADSCrossRefGoogle Scholar
  37. 37.
    W. Walukiewicz, H.E. Ruda, J. Lagowski, and H.C. Gatos, Electron modulation-doped heterostructures, Phys.Rev.B, 30: 4571 (1984).ADSCrossRefGoogle Scholar
  38. 38.
    F. Thiele, W. Hansen, M. Horst, J.P. Kotthaus, J.C. Maan, U. Merkt, K. Ploog, G. Weimann, and A.D. Wieck, Cyclotron resonance in n-GaAs/GaAlAs heterojunctions, Springer Series in Solid State Sci., 71: 252 (1987).CrossRefGoogle Scholar
  39. 39.
    W. Scidenbusch, E. Gornik, G. Weimann, Cyclotron resonance linewidth oscillations in the integer and fractional quantum hall regimes, Phys. Rev. B, to be published.Google Scholar
  40. 40.
    E. Gornik, T.Y. Chang, T.J. Bridges, V.T. Nguyen, J.D. Mc Gee, W. Müller, Landau level electron lifetimes in n-InSb, Phys. Rev. Lett., 40: 1151 (1978).Google Scholar
  41. 41.
    G.R. Allan, A. Black, C.R. Pidgeon, E. Gornik, W. Scidenbusch, P. Colter, Impurity and Landau-level electron lifetimes in n-type GaAs, Phys. Rev. B, 31: 3560 (1985).ADSCrossRefGoogle Scholar
  42. 42.
    M. Helm, E. Gornik, A. Black, G.R. Allan, C.R. Pidgeon, K.Mitchell, Hot electron Landau level lifetime in GaAs/GaAlAs heterostructures, Physica, 134B: 323 (1985).Google Scholar
  43. 43.
    J.F. Ryan, Time-resolved photo luminescence for quantum well semi-conductor heterostructures, Physica, 134B: 403 (1985).Google Scholar
  44. 44.
    R.W. Hollering, T.T. Berendschot, H.J. Bluyssen, H.A. Reinen, P. Wyder, Energy relaxation of lower dimensional hot carriers studied with picosecond photoluminescence, in: “Proc. of the 18th Int. Conf. on The Physics of Semiconductors, Stockholm”, O. Engstrom, World Scientific, Singapore (1987), p. 1323.Google Scholar
  45. 45.
    G.A. Rodriguez, R.M. Hart, A.J. Sievers, F. Keilmann, Z. Schlesinger, S. Wright, W.I. Wang, Intensity dependent CR in a GaAs/GaAlAs 2D electron gas, Appl.Phys.Lett., 49: 458 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • E. Gornik
    • 1
  1. 1.Institut für ExperimentalphysikUniversity of InnsbruckInnsbruckAustria

Personalised recommendations