Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 170))

Abstract

The concept of tunneling through a potential barrier lies at the core of quantum mechanics, and its experimental observation is a manifestation of the wave-like behavior of matter. Since the early days of quantum mechanics, tunneling models have been used to explain fundamental experiments such as the ionization of hydrogen by an electric field and the emission of alpha particles by heavy nuclei. The idea of tunneling was also incorporated very soon into solid-state physics, and, thus, was used in 1928 by Fowler and Nordheim to describe field emission from metals, and by Zener in 1,934 to account for internal field emission in semiconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. B. Duke, “Tunneling in Solids,” Academic Press, New York (1969).

    Google Scholar 

  2. L. L. Chang, L. Esaki, and R. Tsu, Resonant tunneling in semi-conductor double barriers, Appl. Phys. Lett., 24: 593 (1974).

    Article  ADS  Google Scholar 

  3. See, e. g., D. Böhm, “Quantum Theory,” Prentice-Hall, New York (1951).

    Google Scholar 

  4. K. H. Gundlach, Zur Berechnung des Tunnelstroms durch eine Trapezförmige Potentialstufe, Solid State Electron. 9: 949 (1966).

    Article  ADS  Google Scholar 

  5. J. Maserjian, Tunneling in thin MOS structures, J. Vac. Sci. Technol., 11: 996 (1974).

    Article  ADS  Google Scholar 

  6. T. W. Hickmott, P. Solomon, R. Fischer, and H. Morkoc, Resonant Fowler-Nordheim tunneling in n¯GaAs-undoped AlxGa1-xAs -n+GaAs capacitors, Appl. Phys. Lett., 44: 90 (1984).

    Google Scholar 

  7. E. O. Kane, Basic concepts of tunneling, in: “Tunneling phenomena in solids,” E. Burstein and S. Lundqvist, ed., Plenum, New York (1969).

    Google Scholar 

  8. B. Ricco, and M. Ya. Azbel, Physics of resonant tunneling. The one-dimensional double-barrier case, Phys. Rev. B, 29: 1970 (1984).

    Article  ADS  Google Scholar 

  9. T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue, and H. Q. Le, Observation of millimeter-wave oscillation from resonant tunneling diodes and some theoretical consideration of ultimate frequency limits, Appl. Phys. Lett., 50: 322 (1987).

    Google Scholar 

  10. T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D.. Peck, Resonant tunneling through quantum wells at frequencies up to 2.5 THz, Appl. Phys. Lett., 43: 588 (1983).

    Article  ADS  Google Scholar 

  11. H. Ohnishi, T. Inata, S. Muto, N. Yokoyama, and A. Shibatomi, Self-consistent analysis of resonant tunneling current, Appl. Phys. Lett., 49: 1248 (1986).

    Article  ADS  Google Scholar 

  12. E. E. Mendez, W. I. Wang, B. Ricco, and L. Esaki, Resonant tunneling of holes in AlAs-GaAs-AlAs heterostructures, Appl. Phys. Lett., 47: 415 (1985).

    Article  ADS  Google Scholar 

  13. E. E. Mendez, E. Calleja, C. E. T. Goncalves da Silva, L. L. Chang, and W. I. Wang, Observation by resonant tunneling of high-energy states in GaAs-Ga-1-xAlxAs quantum wells, Phys. Rev. B, 33: 7368 (1986).

    Google Scholar 

  14. T. H. H. Vuong, D. C. Tsui, and W. T. Tsang, Tunneling in In0.53Ga0.47As-InP double-barrier structures, Appl. Phys. Lett. 50: 212 (1987).

    Google Scholar 

  15. E. E. Mendez, L, Esaki, and W. I. W. ng, Resonant magnetotunneling in GaAlAs-GaAs-GaAlAs heterostructures, Phys. Rev. B, 33: 2893 (1986).

    Google Scholar 

  16. V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Resonant tunneling in magnetic field: evidence for space-charge build-up, Phys. Rev. B, 35:xxxx (1987).

    Google Scholar 

  17. E. E. Mendez, E. Calleja, and W. I. Wang, Tunneling through indirect-gap semiconductor barriers, Phys. Rev. B, 34: 6026 (1986).

    Google Scholar 

  18. E. Finkman, M. D. Sturge, and M. C. Tamargo, X-point excitons in AlAs/GaAs superlattices, Appl. Phys. Lett., 49: 1299 (1986).

    ADS  Google Scholar 

  19. E. E. Mendez, W. I. Wang, E. Calleja, and C. E. T. Goncalves da Silva, Resonant tunneling via X-point states in AlAs-GaAs-AlAs heterostructures, Appl. Phys. Lett., 50: 1263 (1987).

    Google Scholar 

  20. I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition, J. Appl. Phys., 59: 3792 (1986).

    Article  ADS  Google Scholar 

  21. P. M. Solomon, S. L. Wright, and C. Lanza, Perpendicular transport across (Al,Ga)As and the r to X transition, Superlattices and Microstructures, 2: 521 (1986).

    Article  ADS  Google Scholar 

  22. A. D. Stone, and P. A. Lee, Effect of inelastic processes on resonant tunneling in one dimension, Phys. Rev. Lett., 54: 1196 (1985).

    Article  ADS  Google Scholar 

  23. S. Luryi, Frequency limit of double-barrier resonant-tunneling oscillators, Appl. Phys. Lett., 47: 490 (1985).

    Article  ADS  Google Scholar 

  24. H. Morkoc, J. Chen, U. K. Reddy, T. Henderson, and S. Luryi, Observation of a negative differential resistance due to tunneling through a single barrier into a quantum well, Appl. Phys. Lett., 49: 70 (1986).

    Article  ADS  Google Scholar 

  25. M. Büttiker, Role of quantum coherence in series resistors, Phys. Rev. B, 33: 3020 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Mendez, E.E. (1987). Physics of Resonant Tunneling in Semiconductors. In: Mendez, E.E., von Klitzing, K. (eds) Physics and Applications of Quantum Wells and Superlattices. NATO ASI Series, vol 170. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5478-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5478-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5480-2

  • Online ISBN: 978-1-4684-5478-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics