Physics of Resonant Tunneling in Semiconductors

  • E. E. Mendez
Part of the NATO ASI Series book series (NSSB, volume 170)


The concept of tunneling through a potential barrier lies at the core of quantum mechanics, and its experimental observation is a manifestation of the wave-like behavior of matter. Since the early days of quantum mechanics, tunneling models have been used to explain fundamental experiments such as the ionization of hydrogen by an electric field and the emission of alpha particles by heavy nuclei. The idea of tunneling was also incorporated very soon into solid-state physics, and, thus, was used in 1928 by Fowler and Nordheim to describe field emission from metals, and by Zener in 1,934 to account for internal field emission in semiconductors.


Landau Level Tunneling Current Resonant Tunneling Tunneling Probability Negative Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. B. Duke, “Tunneling in Solids,” Academic Press, New York (1969).Google Scholar
  2. 2.
    L. L. Chang, L. Esaki, and R. Tsu, Resonant tunneling in semi-conductor double barriers, Appl. Phys. Lett., 24: 593 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    See, e. g., D. Böhm, “Quantum Theory,” Prentice-Hall, New York (1951).Google Scholar
  4. 4.
    K. H. Gundlach, Zur Berechnung des Tunnelstroms durch eine Trapezförmige Potentialstufe, Solid State Electron. 9: 949 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    J. Maserjian, Tunneling in thin MOS structures, J. Vac. Sci. Technol., 11: 996 (1974).ADSCrossRefGoogle Scholar
  6. 6.
    T. W. Hickmott, P. Solomon, R. Fischer, and H. Morkoc, Resonant Fowler-Nordheim tunneling in n¯GaAs-undoped AlxGa1-xAs -n+GaAs capacitors, Appl. Phys. Lett., 44: 90 (1984).Google Scholar
  7. 7.
    E. O. Kane, Basic concepts of tunneling, in: “Tunneling phenomena in solids,” E. Burstein and S. Lundqvist, ed., Plenum, New York (1969).Google Scholar
  8. 8.
    B. Ricco, and M. Ya. Azbel, Physics of resonant tunneling. The one-dimensional double-barrier case, Phys. Rev. B, 29: 1970 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    T. C. L. G. Sollner, E. R. Brown, W. D. Goodhue, and H. Q. Le, Observation of millimeter-wave oscillation from resonant tunneling diodes and some theoretical consideration of ultimate frequency limits, Appl. Phys. Lett., 50: 322 (1987).Google Scholar
  10. 10.
    T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D.. Peck, Resonant tunneling through quantum wells at frequencies up to 2.5 THz, Appl. Phys. Lett., 43: 588 (1983).ADSCrossRefGoogle Scholar
  11. 11.
    H. Ohnishi, T. Inata, S. Muto, N. Yokoyama, and A. Shibatomi, Self-consistent analysis of resonant tunneling current, Appl. Phys. Lett., 49: 1248 (1986).ADSCrossRefGoogle Scholar
  12. 12.
    E. E. Mendez, W. I. Wang, B. Ricco, and L. Esaki, Resonant tunneling of holes in AlAs-GaAs-AlAs heterostructures, Appl. Phys. Lett., 47: 415 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    E. E. Mendez, E. Calleja, C. E. T. Goncalves da Silva, L. L. Chang, and W. I. Wang, Observation by resonant tunneling of high-energy states in GaAs-Ga-1-xAlxAs quantum wells, Phys. Rev. B, 33: 7368 (1986).Google Scholar
  14. 14.
    T. H. H. Vuong, D. C. Tsui, and W. T. Tsang, Tunneling in In0.53Ga0.47As-InP double-barrier structures, Appl. Phys. Lett. 50: 212 (1987).Google Scholar
  15. 15.
    E. E. Mendez, L, Esaki, and W. I. W. ng, Resonant magnetotunneling in GaAlAs-GaAs-GaAlAs heterostructures, Phys. Rev. B, 33: 2893 (1986).Google Scholar
  16. 16.
    V. J. Goldman, D. C. Tsui, and J. E. Cunningham, Resonant tunneling in magnetic field: evidence for space-charge build-up, Phys. Rev. B, 35:xxxx (1987).Google Scholar
  17. 17.
    E. E. Mendez, E. Calleja, and W. I. Wang, Tunneling through indirect-gap semiconductor barriers, Phys. Rev. B, 34: 6026 (1986).Google Scholar
  18. 18.
    E. Finkman, M. D. Sturge, and M. C. Tamargo, X-point excitons in AlAs/GaAs superlattices, Appl. Phys. Lett., 49: 1299 (1986).ADSGoogle Scholar
  19. 19.
    E. E. Mendez, W. I. Wang, E. Calleja, and C. E. T. Goncalves da Silva, Resonant tunneling via X-point states in AlAs-GaAs-AlAs heterostructures, Appl. Phys. Lett., 50: 1263 (1987).Google Scholar
  20. 20.
    I. Hase, H. Kawai, K. Kaneko, and N. Watanabe, Current-voltage characteristics through GaAs/AlGaAs/GaAs heterobarriers grown by metalorganic chemical vapor deposition, J. Appl. Phys., 59: 3792 (1986).ADSCrossRefGoogle Scholar
  21. 21.
    P. M. Solomon, S. L. Wright, and C. Lanza, Perpendicular transport across (Al,Ga)As and the r to X transition, Superlattices and Microstructures, 2: 521 (1986).ADSCrossRefGoogle Scholar
  22. 22.
    A. D. Stone, and P. A. Lee, Effect of inelastic processes on resonant tunneling in one dimension, Phys. Rev. Lett., 54: 1196 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    S. Luryi, Frequency limit of double-barrier resonant-tunneling oscillators, Appl. Phys. Lett., 47: 490 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    H. Morkoc, J. Chen, U. K. Reddy, T. Henderson, and S. Luryi, Observation of a negative differential resistance due to tunneling through a single barrier into a quantum well, Appl. Phys. Lett., 49: 70 (1986).ADSCrossRefGoogle Scholar
  25. 25.
    M. Büttiker, Role of quantum coherence in series resistors, Phys. Rev. B, 33: 3020 (1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • E. E. Mendez
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations