Electrical Transport in Microstructures

  • Frank Stern
Part of the NATO ASI Series book series (NSSB, volume 170)


These lectures are intended to provide an introduction to carrier transport in systems with reduced dimensionality. The main application will be to electrons in silicon inversion layers and GaAs heterojunctions and quantum wells. Knowledge of basic aspects of semiconductor physics and of transport in solids, as given, for example, in Kittel1 or Ziman2 will be assumed. More detailed discussions of transport, particularly in semiconductors, can be found in Wilson3 (which includes semiconductors in spite of the title), in “big” Ziman,4 and in Seeger.5 General concepts of heterostructure physics are presented in other lectures in this volume.


Acoustic Phonon Inversion Layer Coulomb Scattering Alloy Scattering Donor Binding Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Kittel, “Introduction to Solid State Physics,” 5th ed., Wiley, New York (1976).Google Scholar
  2. 2.
    J. M. Ziman, “Principles of the Theory of Solids,” 2nd ed.,Cambridge (1972).Google Scholar
  3. 3.
    A. H. Wilson, “The Theory of Metals”, 2nd ed., Cambridge (1953).Google Scholar
  4. 4.
    J. M. Ziman, “Electrons and Phonons,” Oxford (1960).Google Scholar
  5. 5.
    K. Seeger, “Semiconductor Physics,” Springer, Wien (1973).Google Scholar
  6. 6.
    S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system, Prog. Theor. Phys. 63: 707 (1980).Google Scholar
  7. 7.
    H. Fukuyama, Theory of weakly localized regime of the Anderson localization in two dimensions, Surf. Sci. 113: 489 (1982).Google Scholar
  8. 8.
    P. A. Lee and T. V. Ramakrishnan, Disordered electronic systems, Rev. Mod. Phys. 57: 287 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    S. Kawaji, Weak localization and negative magnetoresistance in semiconductor two-dimensional systems, Surf. Sci. 170: 682 (1986).Google Scholar
  10. 10.
    F. Stern and W. E. Howard, Properties of semiconductor surface inversion layers in the electric quantum limit, Phys. Rev. 163: 816 (1967).Google Scholar
  11. 11.
    G. Fishman, Mobility in a quasi-one-dimensional semiconductor: An analytical approach, Phys. Rev. B 34: 2394 (1986).MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    S. Das Sarma and X. C. Xie, Calculated transport properties of ultrasubmicron quasi-one-dimensional inversion lines, Phys. Rev. B (1987).Google Scholar
  13. 13.
    F. A. Riddoch and B. K. Ridley, Phonon scattering of electrons in quasi-one-dimensional and quasi-two-dimensional quantum wells, Surf. Sci. 142: 260 (1984).Google Scholar
  14. 14.
    H. Sakaki, Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures, Jpn. J. Appl. Phys. 19:L735 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    T. Ando, A. B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54: 437 (1982).ADSCrossRefGoogle Scholar
  16. 16.
    H. L. Stôrmer, A. C. Gossard, and W. Wiegmann, Observation of intersubband scattering in a 2-dimensional electron system, Solid State Commun. 41: 707 (1982).ADSCrossRefGoogle Scholar
  17. 17.
    M. J. Kane, N. Apsley, D. A. Anderson, L. L. Taylor, and T. Kerr, Parallel conduction in GaAs/AlxGa1-xAs modulation doped hetero- junctions, J. Phys. C 18: 5629 (1985).Google Scholar
  18. 18.
    D. A. Syphers, K. P. Martin, and R. J. Higgins, Determination of transport coefficients in high mobility heterostructure systems in the presence of parallel conduction, Appl. Phys. Lett. 49: 534 (1986).Google Scholar
  19. 19.
    F. Stern, Friedel phase-shift sum rule for semiconductors, Phys. Rev. 158: 697 (1967).Google Scholar
  20. 20.
    T. Ando, Self-consistent results for a GaAs/AlxGa1-xAs heterojunction. II. Low temperature mobility, J. Phys. Soc. Japan 51: 3900 (1982).Google Scholar
  21. 21.
    F. Stern, Doping considerations for heterojunctions, Appl. Phys. Lett. 43: 974 (1983).ADSCrossRefGoogle Scholar
  22. 22.
    F. Stern, Calculated temperature dependence of mobility in silicon inversion layers, Phys. Rev. Lett. 44: 1469 (1980).ADSCrossRefGoogle Scholar
  23. 23.
    Y. Kawaguchi and S. Kawaji, Lattice scattering mobility of n-in-version layers in Si(100) at low temperatures, Surf. Sci. 98: 211 (1980).Google Scholar
  24. 24.
    K. M. Cham and R. G. Wheeler, Temperature-dependent resistivitiesin silicon inversion layers at low temperatures, Phys. Rev. Lett. 44: 1472 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    S. I. Dorozhkin and V. T. Dolgopolov, Conductivity increase of a 2D electron gas with decreasing temperature in Si(100) metal- insulator-semiconductor structures, Pis’ma Zh. Eksp. Teor. Fiz. 40:245 (1984) [JETP Lett. 40:1019 (1984)].Google Scholar
  26. 26.
    A. Gold and V. T. Dolgopolov, Temperature dependence of the conductivity for the two-dimensional electron gas: Analytical results for low temperatures, Phys. Rev. B 33: 1076 (1986).ADSCrossRefGoogle Scholar
  27. 27.
    V. M. Pudalov, S. G. Semenchinskii, and V. S. Edel’man, Oscillations of the chemical potential and the energy spectrum of electrons in the inversion layer at a silicon surface in a magnetic field, Zh. Eksp. Teor. Fiz. 89:1870 (1985) [Sov. Phys. JETP 62:1079 (1985)].Google Scholar
  28. 28.
    R. P. Smith and P. J. Stiles, Temperature dependence of the conductivity of a silicon inversion layer at low temperatures, Solid State Commun. 58: 511 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    F. Stern and S. Das Sarma, Self-consistent treatment of screening and Coulomb scattering in silicon inversion layers at low temperatures, Solid-State Electron. 28:211 (1985) (extended abstract).Google Scholar
  30. 30.
    A. Gold and W. Gotze, Localization and screening anomalies in two-dimensional systems, Phys. Rev. B 33: 2495 (1986).ADSCrossRefGoogle Scholar
  31. 31.
    A. Gold, Transport and cyclotron resonance theory for GaAs-AlGaAsheterostructures, Z. Phys. B 63: 1 (1986).ADSCrossRefGoogle Scholar
  32. 32.
    A. Gold, Metal insulator transition due to surface roughness scattering in a quantum well, Solid State Commun. 60: 531 (1986).ADSCrossRefGoogle Scholar
  33. 33.
    J. L. Robert, A. Raymond, L. Konczewicz, C. Bousquet, W. Zawadski,F. Alexandre, I. M. Masson, J. P. Andre, and P. M. Frijlink, Magnetic-field-induced metal-nonmetal transition in GaAs- Ga1-xAlxAs heterostructures, Phys. Rev. B 33:5935 (1986).Google Scholar
  34. 34.
    P. O. Hahn and M. Henzler, The Si-Si02 interface: Correlation of atomic structure and electrical properties, J. Vac. Sci. Technol. A 2: 574 (1984).ADSGoogle Scholar
  35. 35.
    S. M. Goodnick, D. K. Ferry, C. W. Wilmsen, Z. Liliental, D. Fathy, and O. L. Krivanek, Surface roughness at the Si(100)-Si02 interface, Phys. Rev. B 32: 8171 (1985).Google Scholar
  36. 36.
    R. E. Prange and T. W. Nee, Quantum spectroscopy of the low-field oscillations in the surface impedance, Phys. Rev. 168: 779 (1968).Google Scholar
  37. 37.
    Y. Matsumoto and Y. Uemura, Scattering mechanism and low temperature mobility of MOS inversion layers, in “Proceedings of the Second International Conference on Solid Surfaces, Kyoto,” Jpn. J. Appl. Phys. Suppl. 2, Pt. 2, p. 367 (1974).ADSCrossRefGoogle Scholar
  38. 38.
    A. Gold, Conductivity, plasmon, and cyclotron-resonance anomalies in Si (100) metal-oxide-semiconductor systems, Phys. Rev. B 32:4014 (1985).Google Scholar
  39. 39.
    J. A. Brum and G. Bastard, Self-consistent calculations of charge transfer and alloy scattering-limited mobility in InP-Ga1-xInxAsyP1-y single quantum wells, Solid State Commun. 53:727 (1985). See also P. K. Basu and B. R. Nag, Estimation of alloy scattering potential in ternaries from the study of two-dimensional electron electron transport, Appl. Phys. Lett. 43:689 (1983).Google Scholar
  40. 40.
    T. S. Kuan, T. F. Kuech, W. I. Wang, and E. L. Wilkie, Long-range order in AlxGa1-xAs, Phys. Rev. Lett. 54: 201 (1985).Google Scholar
  41. 41.
    P. J. Price, Two-dimensional electron transport in semiconductor layers. I. Phonon scattering, Ann. Phys. (N.Y.) 133: 217 (1981).Google Scholar
  42. 42.
    B. K. Ridley, The electron-phonon interaction in quasi-two-dimensional quantum-well structures, J. Phys. C 15: 5899 (1982).ADSGoogle Scholar
  43. 43.
    P. J. Price, Two-dimensional electron transport in semiconductor layers. II. Screening, J. Vac. Sci. Technol. 19: 599 (1981).ADSGoogle Scholar
  44. 44.
    S. Kawaji, The two-dimensional lattice scattering mobility in a semiconductor inversion layer, J. Phys. Soc. Japan 27: 906 (1969).ADSGoogle Scholar
  45. 45.
    P. J. Price, Electron transport in polar heterolayers, Surf. Sci. 113: 199 (1982).Google Scholar
  46. 46.
    H. Ezawa, S. Kawaji, and K. Nakamura, Surfons and the electron mobility in silicon inversion layers, Jpn. J. Appl. Phys. 13:126 (1974); 14: 921 (E) (1975).Google Scholar
  47. 47.
    M. A. Paalanen, D. C. Tsui, A. C. Gossard, and J. C. M. Hwang, Temperature dependence of electron mobility in GaAs-AlxGa1-xAs heterostructures from 1 to 10 K, Phys. Rev. B 29: 6003 (1984).Google Scholar
  48. 48.
    E. E. Mendez, P. J. Price, and M. Heiblum, Temperature dependence of the electron mobility in GaAs-GaAlAs heterostructures, Appl. Phys. Lett. 45: 294 (1984).Google Scholar
  49. 49.
    B. J. F. Lin, D. C. Tsui, and G. Weimann, Mobility transition in the two-dimensional electron gas in GaAs-AlGaAs heterostructures, Solid State Commun. 56:287 ( 1985 ); B. J. F. Lin, Ph. D. Thesis, Electrical Engineering Department, Princeton University (1985).Google Scholar
  50. 50.
    B. Vinter, Low-temperature phonon-limited electron mobility in modulation-doped heterostructures, Phys. Rev. B 33:5904 (1986); Maximum finite-temperature mobility in heterostructures: Influence of screening of electron-acoustic phonon interactions, Surf. Sci. 170: 445 (1986).Google Scholar
  51. 51.
    K. Hirakawa and H. Sakaki, Energy relaxation of two-dimensional electrons and the deformation potential constant in selectively doped AlGaAs/GaAs heterojunctions, Appl. Phys. Lett. 49: 889 (1986).Google Scholar
  52. 52.
    F. Stern and S. Das Sarma, Self-consistent treatment of screening and Coulomb scattering in silicon inversion layers at low temperatures, Solid-State Electron. 28: 211 (1985) (abstract).ADSCrossRefGoogle Scholar
  53. 53.
    K. Hirakawa and H. Sakaki, Mobility of the two-dimensional electron gas at selectively doped n-type AlxGa1-xAs/GaAs heterojunctions with controlled electron concentrations, Phys. Rev. B 33: 8291 (1986).Google Scholar
  54. 54.
    C. Guillemot, M. Baudet, M. Gauneau, A. Regreny, and J. C. Portal, Temperature dependence of electron mobility in GaAs-Ga1-xAlxAs modulation-doped quantum wells, Phys. Rev. B. 35: 2799 (1987).Google Scholar
  55. 55.
    P. J. Price, Heterolayer mobility in the Bloch-Griineisen range, Solid State Commun. 51: 607 (1984).ADSCrossRefGoogle Scholar
  56. 56.
    P. J. Price, Hot electrons in a GaAs heterolayer at low temperature, J. Appl. Phys. 53: 6863 (1982).ADSCrossRefGoogle Scholar
  57. 57.
    W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos, Electron mobility in modulation-doped heterostructures, Phys. Rev. B. 30: 4571 (1984).ADSCrossRefGoogle Scholar
  58. 58.
    E. E. Mendez, Electronic mobility in semiconductor heterostructures, IEEE J. Quant. Electron. QE-22: 1720 (1986).Google Scholar
  59. 59.
    W.I. Wang, E. E. Mendez, Y. Iye, B. Lee, M. H. Kim, and G. E. Stillman, High mobility two-dimensional hole gas in an Al0.26Gao.74As/GaAs heterojunction, J. Appl. Phys. 60:1834 -(1986).Google Scholar
  60. 60.
    W. Walukiewicz, Hole-scattering mechanisms in modulation-doped heterostructures, J. Appl. Phys. 59: 3577 (1986).ADSCrossRefGoogle Scholar
  61. 61.
    T. P. McLean and E. G. S. Paige, A theory of the effects of carrier-carrier scattering on mobility in semiconductors, J. Phys. Chem. Solids 16:220 (1960),Google Scholar
  62. 62.
    R. A. Hopfel, J. Shah, P. A. Wolff, and A. C. Gossard, Negative absolute mobility of minority electrons in GaAs quantum wells, Phys. Rev. Lett. 56: 2736 (1986).ADSCrossRefGoogle Scholar
  63. 63.
    K. Hess, Aspects of high-field transport in semiconductor hetero-layers and semiconductor devices, Adv. Electronics Electron Phys. 59: 239 (1982).Google Scholar
  64. 64.
    L. Reggiani, ed., “Hot-Electron Transport in Semiconductors,” Springer, Berlin (1985).Google Scholar
  65. 65.
    W. T. Masselink, T. S. Henderson, J. Klem, W. F. Kopp, and H. Morkoc, The dependence of 77 K electron velocity-field characteristics on low-field mobility in AlGaAs-GaAs modulation-doped structures, IEEE Trans. Electron Dev. ED-33: 639 (1986).Google Scholar
  66. 66.
    P. J. Price, Hot phonon effects in heterolayers, Physica 134B: 164 (1985).Google Scholar
  67. 67.
    J. Higman and K. Hess, Comment on the use of the electron temperature concept for nonlinear transport problems in semiconductor p-n junctions, Solid-State Electron. 29: 915 (1986).ADSCrossRefGoogle Scholar
  68. 68.
    S. Selberherr, “Analysis and Simulation of Semiconductor Devices,” Springer, Wien (1984).Google Scholar
  69. 69.
    J. J. H. Miller, “NASECODE IV: Proceedings of the Fourth International Conference on the Numerical Analysis of Semiconductor Devices and Integrated Circuits,” Boole Press, Dublin (1985).Google Scholar
  70. 70.
    K. Blotekjaer, Transport equations for electrons in two-valley semiconductors, IEEE Trans. Electron Dev. ED-17: 38 (1970).Google Scholar
  71. 71.
    R. K. Cook and J. Frey, Two-dimensional numerical simulation of energy transport effects in Si and GaAs MESFETs, IEEE Trans. Electron Dev. ED-29: 970 (1982).Google Scholar
  72. 72.
    M. Rudan and F. Odeh, Multidimensional discretization scheme for the hydrodynamic model of semiconductor devices, COMPEL 5: 149 (1986).MathSciNetMATHGoogle Scholar
  73. 73.
    P. J. Price, Monte Carlo calculation of electron transport in solids, in “Semiconductors and Semimetals,” ed. by R. K. Willardson and A. C. Beer, Academic Press, New York (1979), Vol. 14, p. 249.Google Scholar
  74. 74.
    C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials, Rev. Mod. Phys. 55: 645 (1983).ADSCrossRefGoogle Scholar
  75. 75.
    K. Yokoyama and K. Hess, Monte Carlo study of electronic transport in Al1-xGaxAs/GaAs single-well heterostuctures, Phys. Rev. B 33: 5595 (1986).Google Scholar
  76. 76.
    J. G. Ruch and W. Fawcett, Temperature dependence of the transport properties of gallium arsenide determined by a Monte Carlo method, J. Appl. Phys. 41: 3843 (1970).ADSCrossRefGoogle Scholar
  77. 77.
    M. V. Fischetti, D. J. DiMaria, L. Dori, J. Batey, E. Tierney, and J. Stasiak, Ballistic electron transport in thin silicon dioxide films, Phys. Rev. B 35: 4404 (1987).ADSCrossRefGoogle Scholar
  78. 78.
    P. T. Nguyen, D. H. Navon, and T. W. Tang, Boundary conditions in regional Monte Carlo device analysis, IEEE Trans. Electron Dev. ED-32: 783 (1985).Google Scholar
  79. 79.
    Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in quantum theory, Phys. Rev. 115: 485 (1959).Google Scholar
  80. 80.
    Another scale length, the thermal length LT = (hD/kBT)1/2, also enters under some conditions. See, for example, A. D. Stone and Y. Imry, Periodicity of the Aharonov-Bohm effect in normal-metal rings, Phys. Rev. Lett. 56: 189 (1986).Google Scholar
  81. 81.
    R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Observation of h/e Aharonov-Bohm oscillations in normal-metal rings, Phys. Rev. Lett. 54: 2696 (1985).ADSCrossRefGoogle Scholar
  82. 82.
    S. Datta and S. Bandyopadhyay, Aharonov-Bohm effect in semiconductor microstructures, Phys. Rev. Lett. 58: 717 (1987).ADSCrossRefGoogle Scholar
  83. 83.
    P. A. Lee and A. D. Stone, Universal conductance fluctuations in metals, Phys. Rev. Lett. 55: 1622 (1985).ADSCrossRefGoogle Scholar
  84. 84.
    C. P. Umbach, S. Washburn, R. B. Laibowitz, and R. A. Webb, Magnetoresistance of small, quasi-one-dimensional, normal-metal rings and lines, Phys. Rev. B 30: 4048 (1984).ADSCrossRefGoogle Scholar
  85. 85.
    J. C. Licini, D. J. Bishop, M. A. Kastner, and J. Melngailis, Aperiodic magnetoresistance oscillations in narrow inversion layers in Si, Phys. Rev. Lett. 55: 2987 (1985).ADSCrossRefGoogle Scholar
  86. 86.
    S. B. Kaplan and A. Hartstein, Universal conductance fluctuations in narrow Si accumulation layers, Phys. Rev. Lett. 56: 2403 (1986).ADSCrossRefGoogle Scholar
  87. 87.
    W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Jackel, D. M. Tennant, and A. D. Stone, Universal conductance fluctuations in silicon inversion-layer nanostructures, Phys. Rev. Lett. 56: 2865 (1986).ADSCrossRefGoogle Scholar
  88. 88.
    A. D. Benoit, S. Washburn, C. P. Umbach, R. B. Laibowitz, and R. A. Webb, Asymmetry in the magnetoconductance of metal wires and loops, Phys. Rev. Lett. 57: 1765 (1986).ADSCrossRefGoogle Scholar
  89. 89.
    A. B. Fowler, A. Hartstein, and R. A. Webb, Conductance in restricted-dimensionality accumulation layers, Phys. Rev. Lett 48: 196 (1982).ADSCrossRefGoogle Scholar
  90. 90.
    P. A. Lee, Variable-range hopping in finite one-dimensional wires, Phys. Rev. Lett. 53: 2042 (1984).ADSCrossRefGoogle Scholar
  91. 91.
    J. A. Mclnnes and P. N. Butcher, Numerical calculations of variable-range hopping in one-dimensional MOSFETs, J. Phys. C 18: L921 (1985).Google Scholar
  92. 92.
    M. Ya. Azbel, A. Hartstein, and D. P. DiVincenzo, T dependence of the conductance in quasi one-dimensional systems, Phys. Rev. Lett. 52:1641 (1984); M. Ya. Azbel and D. P. DiVincenzo, Fin-ite-temperature conductance in one dimension, Phys. Rev. B 30: 6877 (1984).Google Scholar
  93. 93.
    A. B. Fowler, G. L. Timp, J. J. Wainer, and R. A. Webb, Observation of resonant tunneling in silicon inversion layers, Phys. Rev. Lett. 57: 138 (1986).ADSCrossRefGoogle Scholar
  94. 94.
    See, for example, the papers cited in F. Stern, Recent progress in electronic properties of quasi-two-dimensional systems, Surf. Sci. 58:333 (1976), or p. 520 of Ref. 15.Google Scholar
  95. 95.
    S. Washburn and R. A. Webb, Aharonov-Bohm effect in normal metal quantum coherence and transport, Adv. Phys. 35: 375 (1986).Google Scholar
  96. 96.
    M. Buttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett. 57:1761 (1986); Voltage fluctuations in small conductors, Phys. Rev. B 35: 4123 (1987).Google Scholar
  97. 97.
    G. D. Mahan, Quantum transport equation for electric and magnetic fields, Phys. Repts. 145: 251 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Frank Stern
    • 1
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations