Advertisement

Molecular Beam Epitaxy of Artificially Layered III-V Semiconductors on an Atomic Scale

  • Klaus Ploog
Part of the NATO ASI Series book series (NSSB, volume 170)

Abstract

In the past decade precisely controlled crystal growth techniques have emerged, including molecular beam epitaxy (MBE)/1/and metalorganic chemical vapour deposition (MO CVD)/2 /, which have created a variety of new opportunities for the fabrication of artificially layered III-V semiconductor structures. High-quality superlattices (SL) comprised of thin layers of, e.g., AlAs and GaAs have been prepared/3, 4/with the SL period ranging from a value much larger than the underlying natural periodicity of the lattice down to the width of a monolayer, where a monolayer is defined as one layer of cations plus one layer of anions. The interfaces between these epitaxial layers of different composition are used to confine electrons and/ or holes to two-dimensional (2D) motion (electrical and optical confinement). Excitons play a more significant role in these quasi-2D systems than in the corresponding bulk material/5 /.

Keywords

Molecular Beam Epitaxy Molecular Beam Epitaxy Growth Barrier Thickness Effusion Cell Molecular Beam Epitaxy System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. / 1 /.
    For an extensive survey on MBE see: Proc. 4th Int. Conf. Molecular Beam Epitaxy, J. Cryst. Growth 81 (1987)Google Scholar
  2. / 2 /.
    For an extensive survey on MOCVD see: Proc. 2nd Int. Conf. Metal-organic Vapour Phase Epitaxy, J. Cryst. Growth 77 (1986)Google Scholar
  3. / 3 /.
    A.C. Gossard, Thin Solid Films 57, 3 (1979)ADSCrossRefGoogle Scholar
  4. / 4 /.
    L.L. Chang and K. Ploog (Eds.): “Molecular Beam Epitaxy and Hetero-structures” (Martinus Mijhoff, Dordrecht, 1985) NATO Adv. Sci. Inst. Ser. E 87 (1985)Google Scholar
  5. / 5 /.
    R.C. Miller and D.A. Kleinmann, J. Lumin. 30, 520 (1985)CrossRefGoogle Scholar
  6. / 6 /.
    E.H.C. Parker (Ed.)-. “The Technology and Physics of Molecular Beam Epitaxy” ( Plenum Press, New York, 1985 )Google Scholar
  7. / 7 /.
    M.A. Herman, Vacuum 32, 555 (1982)CrossRefGoogle Scholar
  8. / 8 /.
    J. Saito and A. Shibatomi, Fujitsu Tech. J. 21, 190 (1985)Google Scholar
  9. / 9 /.
    J. Saito, T. Igarashi, T. Nakamura, K. Kondo, and A. Shibatomi, J. Cryst. Growth 81, 188 (1987)ADSCrossRefGoogle Scholar
  10. / 10 /.
    C.T. Foxon and B.A. Joyce, In Current Physics in Materials Science, Vol. 7, ed. by E. Kaldis ( North-Holland, Amsterdam 1981 )Google Scholar
  11. / 11 /.
    M.B. Panish, J. Electrochem. Soc. 127, 2729 (1980)CrossRefGoogle Scholar
  12. / 12 /.
    A.R. Calawa, Appl. Phys. Lett. 38, 701 (1981)ADSCrossRefGoogle Scholar
  13. / 13 /.
    H. Künzel, J. Knecht, H. Jung, K. Wünstel, and K. Ploog, Appl. Phys. A 28, 167 (1982)ADSCrossRefGoogle Scholar
  14. / 14 /.
    T. Henderson, W. Kopp, R. Fischer, J. Klem, H. Morkoc, L.P. Erickson, and P.W. Palmberg, Rev. Sci. Instrum. 55, 1763 (1984)Google Scholar
  15. / 15 /.
    D. Huet, M. Lambert, D. Bonnevie, and D.Dufresne, J. Vac. Sci. Technol. B 3, 823 (1985)CrossRefGoogle Scholar
  16. / 16 /.
    T. Mizutani and K. Hirose, Jpn. J. Appl. Phys. 24, L119 (1985)Google Scholar
  17. / 17 /.
    P.A. Maki, S.C. Palmateer, A.R. Calawa, and B.R. Lee, J. Electrochem. Soc. 132, 2813 (1985)Google Scholar
  18. / 18 /.
    C.T. Foxon and B.A. Joyce, Surf. Sci. 50, 434 (1975)ADSCrossRefGoogle Scholar
  19. / 19 /.
    C.T. Foxon and B.A. Joyce, Surf. Sci. 64, 293 (1977)ADSCrossRefGoogle Scholar
  20. / 20 /.
    C.T. Foxon and B.A. Joyce, J. Cryst. Growth 44, 75 (1978)ADSCrossRefGoogle Scholar
  21. / 21 /.
    R.E. Honig and D.A. Kramer, RCA Review 30, 285 (1969)Google Scholar
  22. / 22 /.
    C.T. Foxon, J.A. Harvey, and B.A. Joyce, J, Phys. Chem. Solids 34, 1693 (1973)Google Scholar
  23. / 23 /.
    C.T. Foxon, B.A. Joyce, and M.T. Norris, J. Cryst. Growth 49, 132 (1980)ADSCrossRefGoogle Scholar
  24. / 24 /.
    Y. Horikoshi, M. Kawashima, and H. Yamaguchi, Jpn. J. Appl. Phys. 25, L 868 (1986)Google Scholar
  25. / 25 /.
    E.C. Larkins, E.S. Hellman, D.G. Schlom, J.S. Harris, M.H. Kim, and G.E. Stillman, J. Cryst. Growth 81, 344 (1987)Google Scholar
  26. / 26 /.
    C.M. Wolfe, G.E. Stillman, and W.T. Lindley, J. Appl. Phys. 41, 3088 (1970)ADSCrossRefGoogle Scholar
  27. / 27 /.
    M. Ilegems, J. Appl. Phys. 48, 1278 (1977)ADSCrossRefGoogle Scholar
  28. / 28 /.
    N. Duhamel, P. Henoc, F. Alexandre, and E.V.K. Rao, Appl. Phys. Lett. 39, 49 (1981)Google Scholar
  29. / 29 /.
    D.L. Miller and P.M. Asbeck, J. Appl. Phys. 57, 1816 (1985)ADSCrossRefGoogle Scholar
  30. / 30 /.
    Y.C. Pao, T. Hierl, and T. Cooper, J. Appl. Phys. 60, 201 (1986)Google Scholar
  31. / 31 /.
    J.L. Lievin and F. Alexandre, Electron Lett. 21, 413 (1985)ADSCrossRefGoogle Scholar
  32. / 32 /.
    E. Nottenburg, H.J. Buhlmann, M. Frei, and M. Ilegems, Appl. Phys. Lett. 44, 71 (1984)Google Scholar
  33. / 33 /.
    J.M. Ballingall, B.J. Morris, D.J. Leopold, and D.L. Rode, J. Appl. Phys. 59, 3571 (1986)Google Scholar
  34. / 34 /.
    M. Heiblum, W.I. Wang, L.E. Osterling, and V. Deline, J. Appl. Phys. 54, 6751 (1983)Google Scholar
  35. / 35 /.
    R. Sacks and H. Shen, Appl. Phys. Lett. 47, 374 (1985)ADSCrossRefGoogle Scholar
  36. / 36 /.
    J. Maguire, R. Murray, R.C. Newman, R.B. Beal, and J.J. Harris, Appl. Phys. Lett. 50, 516 (1987)Google Scholar
  37. / 37 /.
    L. Gonzales, J.B. Clegg, D. Hilton, J.P. Gowers, C.T. Foxon, and B.A. Joyce, Appl. Phys. A 41, 237 (1986)Google Scholar
  38. / 38 /.
    W.I. Wang, E.E. Mendez, T.S. Kuan, and L. Esaki, Appl. Phys. Lett. 47, 826 (1985)Google Scholar
  39. / 39 /.
    D.L. Miller, Appl. Phys. Lett. 47, 1309 (1985)ADSCrossRefGoogle Scholar
  40. / 40 /.
    H. Nobuhara, O Wada, and T. Fujii, Electron. Lett. 23, 35 (1987)Google Scholar
  41. / 41 /.
    A.Y. Cho and J.R. Arthur, Progr. Solid State Chem. 10, 157 (1975)CrossRefGoogle Scholar
  42. / 42 /.
    G.J. Davies, R. Heckingbottom, H. Ohno, C.E.C. Wood, and A.R. Calawa, Appl. Phys. Lett. 37, 290 (1980)Google Scholar
  43. / 43 /.
    H. Fronius, A. Fischer, and K. Ploog, J. Cryst. Growth 81, 169 (1987)ADSCrossRefGoogle Scholar
  44. / 44 /.
    K. Oe and Y. Imamura, Jpn. J. Appl. Phys. 24, 779 (1985)ADSCrossRefGoogle Scholar
  45. / 45 /.
    L.P. Erickson, G.L. Carpenter, D.D. Seibel, P.W. Palmberg, P.Pearah, W. Kopp, and H. Morkoc, J. Vac. Sci. Technol. B 3, 536 (1985)Google Scholar
  46. / 46 /.
    D.E. Mars and J.N. Miller, J. Vac. Sci. Technol. B 4, 571 (1986)Google Scholar
  47. / 47 /.
    A.J. Springthorpe and P. Mandeville, J. Vac. Sci. Technol. B 4, 853 (1986)CrossRefGoogle Scholar
  48. / 48 /.
    T. Sakamoto, H. Funabashi, K. Ohta, T. Nakagawa, N.J. Kawai, T. Kojima, and K. Bando, Superlattices and Microstructures 1, 347 (1985)Google Scholar
  49. / 49 /.
    B.A. Joyce, P.J. Dobson., J.H. Neave, K. Woodbridge, J. Zhang, P.K. Larsen, and B. Böiger, Surf. Sci. 168, 423 (1986)Google Scholar
  50. / 50 /.
    Y. Suzuki and H. Okamoto, J. Appl. Phys. 58, 3456 (1985)ADSCrossRefGoogle Scholar
  51. / 51 /.
    M. Tanaka, H. Sakaki, and J. Yoshino, Jpn. J. Appl. Phys. 25, L 155 (1986)Google Scholar
  52. / 52 /.
    F. Voillot, A. Madhukar, J.Y. Kim, P. Chen, N.M. Cho, W.C. Tang, and P.G. Newman, Appl. Phys. Lett. 48, 1009 (1986)Google Scholar
  53. / 53 /.
    L. Tapfer and K. Ploog, Phys. Rev. B 33, 5565 (1986)ADSCrossRefGoogle Scholar
  54. / 54 /.
    Y. Kashihara, T. Kase, and J. Harada, Jpn. J. Appl. Phys. 25, 1834 (1986)ADSCrossRefGoogle Scholar
  55. / 55 /.
    L. Tapfer, W. Stolz, and K. Ploog: Ext. Abstr. 1986 ICSSDM (Jpn. Soc. Appl. Phys., Tokyo, 1986 ) 603Google Scholar
  56. / 56 /.
    D.V. Lang, R.A. Logan, and M. Jaros, Phys. Rev. B 19, 1015 (1979)Google Scholar
  57. / 57 /.
    E.F. Schubert and K. Ploog, Phys. Rev. B 30, 7031 (1984)ADSGoogle Scholar
  58. / 58 /.
    T.N. Morgan, Phys. Rev. B 34, 2664 (1986)ADSCrossRefGoogle Scholar
  59. / 59 /.
    R. Dingle, R.A. Logan, and J.R. Arthur, Inst. Phys. Conf. Ser. 33a, 210 (1977)Google Scholar
  60. / 60 /.
    K. Fujiwara, H. Oppolzer, and K. Ploog, Inst. Phys. Conf. Ser. 74, 351 (1985)Google Scholar
  61. / 61 /.
    K. Ploog, Y. Ohmori, H. Okamoto, W. Stolz, and J. Wagner, Appl. Phys. Lett. 47, 384 (1985)Google Scholar
  62. / 62 /.
    J. Wagner, W. Stolz, J. Knecht, and K. Ploog, Solid State Commun. 57, 781 (1986)ADSCrossRefGoogle Scholar
  63. / 63 /.
    K. Fujiwara, J.L. de Miguel, and K. Ploog, Jpn. J. Appl. Phys. 24, L 405 (1985)Google Scholar
  64. / 64 /.
    B. Deveaud, A. Chomette, B. Lambert, A. Regreny, R. Romestain, and P. Edel, Solid State Commun. 57, 885 (1986)Google Scholar
  65. / 65 /.
    A. Nakamura, K. Fujiwara, Y. Tokuda, T. Nakayama, M. Hirai, Phys. Rev. B 34, 9019 (1986)Google Scholar
  66. / 66 /.
    K. Fujiwara, A. Nakamura, Y. Tokuda, T. Nakayama, and M. Hirai, Appl. Phys. Lett. 49, 1193 (1986)Google Scholar
  67. / 67 /.
    J.J. Coleman, P.D. Dapkus, W.D. Laidig, B.A. Vojak, and H. Holonyak, Appl. Phys. Lett. 38, 63 (1981)Google Scholar
  68. / 68 /.
    Y. Tokuda, Y.N. Ohta, K. Fujiwara, and T. Nakayama, J. Appl. Phys. 60, 2729 (1986)ADSCrossRefGoogle Scholar
  69. / 69 /.
    T. Baba, T. Mizutani, and M. Ogawa, Jpn. J. Appl. Phys. 22, L 627 (1983)Google Scholar
  70. / 70 /.
    K. Ploog and A. Fischer, Appl. Phys. Lett. 48:, 1392 (1986)Google Scholar
  71. / 71 /.
    K. Ploog, H. Fronius, and A. Fischer, Appl. Phys. Lett. 50, (1987)Google Scholar
  72. / 72 /.
    J. L. de Miguel, K. Fujiwara, L. Tapfer, and K. Ploog, Appl. Phys. Lett. 47, 836 (1985)Google Scholar
  73. / 73 /.
    K. Fujiwara, J.L. de Miguel, L. Tapfer, and K. Ploog, Phys. Rev. B. to be published (1987)Google Scholar
  74. / 74 /.
    M. Altarelli, J. Lumin. 30, 472 (1985)CrossRefGoogle Scholar
  75. / 75 /.
    L. Brey, C. Tejedor, J.L. de Miguel, F. Briones, and K. Ploog, Proc. 18th Int. Conf. Phys. Semicond., Ed. 0O. Engström (World Scientific Pubi., Singapore, 1987 ) 727Google Scholar
  76. / 76 /.
    C. Tejedor, J.M. Calleja, F. Meseguer, E.E. Mendez, C.A. Chang, and L. Esaki, Phys. Rev. B 32, 5305 (1985)Google Scholar
  77. / 77 /.
    M.D. Camras, N. Holonyak, K. Hess, J.J. Coleman, R.D. Burnham, and D.R. Scifres, Appl. Phys. Lett. 41, 317 (1982)Google Scholar
  78. / 78 /.
    M. Nakayama, K. Kubota, H. Kato, S. Chika, and N. Sano, Solid State Commun. 53, 493 (1985)Google Scholar
  79. / 79 /.
    T. Isu, D.S. Jian, and K. Ploog, Appl. Phys. A 43, 75 (1987)ADSCrossRefGoogle Scholar
  80. / 80 /.
    T. Nakayama and H. Kamimura, J. Phys. Soc. Jpn. 54, 4726 (1985)ADSCrossRefGoogle Scholar
  81. / 81 /.
    M.A. Gell, D. Ninno, M. Jaros, and D.C. Herbert, Phys. Rev. B 34, 2416 (1986)Google Scholar
  82. / 82 /.
    A. Ishibashi, Y. Mori, M. Itabashi, and M. Watanabe, J. Appl. Phys. 58, 2691 (1985)Google Scholar
  83. / 83 /.
    T. Yao, Jpn. J. Appl. Phys. 22, L 680 (1985)Google Scholar
  84. / 84 /.
    D.S. Jiang, K. Kelting, T. Isu, H.J. Queisser, and K. Ploog, J. Appl. Phys. to be published (1987)Google Scholar
  85. / 85 /.
    For a review on the fundamentals of gas source MBE see: M.B. Panish, Prog. Cryst. Growth Charact. 12r 1 (1986)Google Scholar
  86. / 86 /.
    M.B. Panish, J. Cryst. Growth 81, 249 (1987)ADSCrossRefGoogle Scholar
  87. / 87 /.
    Y. Kawaguchi, H. Asahi, and H. Nagai, Inst. Phys. Conf. Ser. 79, 79 (1986)Google Scholar
  88. / 88 /.
    W.T. Tsang, J.Cryst. Growth 81, 261 (1987) and references therein.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Klaus Ploog
    • 1
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgart-80FR-Germany

Personalised recommendations