Advertisement

Opto-Electronics in Semiconductors Quantum Wells Structures: Physics and Applications

  • D. S. Chemla
Part of the NATO ASI Series book series (NSSB, volume 170)

Abstract

In recent years the development of lightwave communication systems has driven an extensive research in the field of opto-electronics. The capability of optical fibers to carry extremely high bit rates, larger than those that electronic can handle, has raised a lot of attention into optical signal processing. Optics is well suited for parallel processing, hence permitting high throughout, and a number of optical processes in condensed matter have a very fast response time. Therefore it is predictable that optical switching elements are going to become important components in future information processing systems. These devices are based upon the possibility to induce large changes in the refractive index, n, or in the absorption coefficient, α, of some medium. The rational behind this statement goes as follow. When an optical field E ω propagates through a length 1 of matter it experiences a phase change ϕ = (2πn /λ +/2)xl thus an external perturbation can be used for switching this field if it can causes a phase change of the order of Re(Δϕ) ≈π or Im(Δϕ)′≈1. Ideally one would like to dispose of media in which large and fast changes Δn or Δα can be induced with low energy. Furthermore it is also desirable for these media to be robust, to have good optical quality and to be compatible with other electronic and/or optical technologies they must interface. All these requirements point obviously toward semiconductor based materials.

Keywords

Exciton Binding Energy Single Particle State Excitonic Absorption Direct Screening Nonlinear Optical Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.S. Chemla J. Jerphagnon, “Nonlinear Optical Properties of Semiconductors.” Handbook of Semiconductor, Vol 2, Optical Properties of Solids, North-Holland Amsterdam (1980).Google Scholar
  2. [2]
    A. Miller, DA.B. Miller, S.D. Smith Advances in Physics, 30, 697 (1981).Google Scholar
  3. [3]
    See for example, L.L. Chang and K. Ploog, “Molecular Beam Epitaxy and Heterostructures” NATO Advanced Sciences Institute Series, Nijhoff, Dordrecht (1985).Google Scholar
  4. [4]
    See for example, J.B. Mullin, S.J.C. Irvine, R.H. Moss, P.N. Robson, D.R. Wight, “Metal Organic Vapor Phase Epitaxy” North-Holland Amsterdam (1984).Google Scholar
  5. [5]
    For recent reviews see for example, F. Capasso and B.F. Levine J. Lumin. 30, 144 (1985) and D.S. Chemla J. Lumin. 30, 502 (1985).Google Scholar
  6. [6]
    See for example “The Physics and Fabrication of Microstructures and Microdevices” M.J. Kelly and C. Weisbuch, Spinger-Verlag (1986).Google Scholar
  7. [7]
    R. Dingle, W. Wiegmann, C.H. Henry Phys. Rev. Lett. 33, 827 (1974).ADSCrossRefGoogle Scholar
  8. [8]
    R.C. Miller, DA. Kleinman J. Lum. 30,144 (1985).Google Scholar
  9. [9]
    DA.B. Miller, D.S. Chemla, P.W. Smith, A.C. Gossard, W.T. Tsang, Appl. Phys. Lett. 41, 679 (1982).ADSCrossRefGoogle Scholar
  10. [10]
    DA.B. Miller, D.S. Chemla, P.W. Smith, A.C. Gossard, W. Wiegmann, Appl. Phys. B28, 96 (1982).Google Scholar
  11. [11]
    J.S. Weiner, D.S. Chemla, DA.B. Miller, T.H. Wood, D. Sivco, A.Y. Cho Appl. Phys. Lett. 46, 619 (1985).Google Scholar
  12. [12]
    H. Temkin, M.B. Panish, P.M. Petroff, RA. Hamm, J.M. Vandenberg, S. Sunski, Appl. Phys. Lett. 47, 394 (1985).ADSCrossRefGoogle Scholar
  13. [13]
    D.S. Chemla, DA.B. Miller, P.W. Smith, IEEE J. Quant. Electron. QE-20, 265 (1984).Google Scholar
  14. [14]
    D.S. Chemla, D A.B. Miller J. Opt. Soc. Am. B2, 1155 (1985) and reference therein.Google Scholar
  15. [15]
    A. Von Lehnen, J. E. Zucker, J.P. Heritage, D.S. Chemla, Appl. Phys. Lett. 48, 1479 (1986).ADSCrossRefGoogle Scholar
  16. [16]
    A. Von Lehnen, J. E. Zucker, J.P. Heritage, D.S. Chemla, Phys. Rev. B35, 6479 (1987).CrossRefGoogle Scholar
  17. [17]
    For a recent review of semiconductor optical nonlinearities close to the band gap see: H. H. ug and S. Schmitt-Rink, Prog. Quant. Electron. 9, 3 (1984).Google Scholar
  18. [18]
    S. Schmitt-Rink, C Ell, J. Lumin. 30, 585 (1985).CrossRefGoogle Scholar
  19. [19]
    D A.B. Miller, D.S. Chemla, P.W. Smith, A.C. Gossard, W. Wiegmann, Opt. Lett. 4, 477 (1983).ADSCrossRefGoogle Scholar
  20. [20]
    N. Peyghambarian, H. M. Gibbs, J. Opt. Soc. Am. B2, 1215 (1985).ADSCrossRefGoogle Scholar
  21. [21]
    P.W. Smith, Y. Silberberg, D..B. Miller J. Opt. Soc. Am. B2, 1228 (1985).ADSCrossRefGoogle Scholar
  22. [22]
    G.W. Fehrenbach, W. Schafer, J. Treusch, R.G. Ulbrich, Phys. Rev. Lett. 49, 1281 (1982).ADSCrossRefGoogle Scholar
  23. [23]
    G.W. Fehrenbach, W. Schäfer, R.G. Ulbrich, J. Lumin. 30, 154 (1985).CrossRefGoogle Scholar
  24. [24]
    R.L.Fork, B.I. Greene, C.V. Shank, Appl. Phys. Lett. 38, 671 (1981).ADSCrossRefGoogle Scholar
  25. [25]
    W.H. Knox, M.C. Downer, R.L. Fork, C.V. Shank, Opt. Lett. 9, 552 (1984).ADSCrossRefGoogle Scholar
  26. [26]
    W.H. Knox, R.L. Fork, M.C. Downer, D A.B. Miller, D.S. Chemla, C.V. Shank, A.C. Gossard, W Wiegmann, Phys. Rev. Lett. 54, 1306 (1985).ADSCrossRefGoogle Scholar
  27. [27]
    S. Schmitt-Rink, D.S. Chemla, DA.B. Miller, Phys. Rev. B32, 6601 (1985).ADSCrossRefGoogle Scholar
  28. [28]
    W.H. Knox, C. Hirlimann, DAB. Miller, J. Shah, D.S. Chemla, C.V. Shank, Phys. Rev. Lett. 56, 1191 (1986).ADSCrossRefGoogle Scholar
  29. [29]
    D. Hulin, A. Mysyrowicz, A. Antonetti, A. Migus, W.T. Masselink, H. Morkoc, H.M. Gibbs, N. Peyghambarian, Phys. Rev. B33, 4389 (1986).ADSCrossRefGoogle Scholar
  30. [30]
    N. Peyghambarian, H. M. Gibbs, J. L, J. well, A. Antonetti, D. Hulin, A. Mysyrowicz, Phys. Rev. Lett. 52, 2433 (1984).Google Scholar
  31. [31]
    DAB. Miller, J.S. Weiner, D.S. Chemla, IEEE J. Quant. Electr., QE-22, 1816 (1986).Google Scholar
  32. [32]
    DA.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Weigmann, T.H. Wood, CA. Burrus Phys. Rev. B32, 1043 (1985).Google Scholar
  33. [33]
    F.L. Lederman, J.D. Dow Phys. Rev. 13, 1633 (1976).Google Scholar
  34. [34]
    W.H. Knox, DAB. Miller, T.C. Damen, D.S. Chemla, C.V. Shank, Appl. Phys. Lett. 48, 864 (1986).ADSCrossRefGoogle Scholar
  35. [35]
    D A.B. Miller, D.S. Chemla, S. Schmitt-Rink to be published in Phys. Rev. B (1986).Google Scholar
  36. [36]
    J.S. Werner, DAB. Miller, D.S. Chemla, T.C. Damem, CA. Burrus, T.H. Wood, A.C. Gossard, W. Weigmann, Appl. Phys. Lett. 47, 1148 (1985).ADSCrossRefGoogle Scholar
  37. [37]
    I. Bar Joseph, C. Klingshirn, DA.B. Miller, D.S. Chemla, U. Koren, B.I. Miller, Appl. Phys. Lett. 50, 1010 (1987).ADSCrossRefGoogle Scholar
  38. [38]
    DAB. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W.Weigmann, T.H.Wood, CA. Burrus, Phys. Rev. Lett. 53, 217 (1984).Google Scholar
  39. [39]
    T.H. Wood, CA. Burrus, DA.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Weigmann, Appl. Phys. Lett. 44, 16 (1984).ADSCrossRefGoogle Scholar
  40. [40]
    T.H. Wood, CA. Burrus, R.S. Tucker, J.S. Weiner, DA.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Weigmann, IEEE J. Quant. Electron. QE-21, 117 (1985).Google Scholar
  41. [41]
    T.H. Wood, CA. Burrus, R.S. Tucker, J.S. Weiner, DA.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Weigmann, Electronics Lett. 21, 693 (1985).ADSCrossRefGoogle Scholar
  42. [42]
    K. Wakita, Y. Kawamura, Y. Yoshikuni, A. Asahi, Electronics Lett. 21, 338 (1985).ADSCrossRefGoogle Scholar
  43. [43]
    K. Wakita, Y. Kawamura, Y. Yoshikuni, A. Asahi, Electronics Lett. 21, 574 (1985).CrossRefGoogle Scholar
  44. [44]
    T. Miyazawa, S. Tarucha, Y. Ohmori, H. Okamoto, Post deadline paper PI, Second International Conference on Modulated Semiconductor Structures, Kyoto, Japan, Sept. 1985.Google Scholar
  45. [45]
    S. Tarucha, H Okamoto, Appl. Phys. Lett. 48, 1, (1986).ADSCrossRefGoogle Scholar
  46. [46]
    Y. Arakawa, A. Larsson, J. Paslaski, A.Yariv, Appl. Phys. Lett. 48, 561 (1986).ADSCrossRefGoogle Scholar
  47. [47]
    T.H. Wood, CA. Burrus, A.H. Gnauck, J.M. Wiesenfeld, DA.B. Miller, D.S. Chemla, T.C. Damen, Appl. Phys. Lett. 47, 190 (1985).ADSCrossRefGoogle Scholar
  48. [48]
    A. Larsson, A.Yariv, R.Tell, J. Maserjian, S.T. Eng, Appl. Phys. Lett. 47, 866 (1985).Google Scholar
  49. [49]
    DAB. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Weigmann, T.H. Wood, CA. Burrus, Appl. Phys. Lett. 45, 13 (1984).ADSCrossRefGoogle Scholar
  50. [50]
    DAB. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Weigmann, T.H. Wood, CA. Burrus, Opt. Lett. 9, 567, (1984).ADSCrossRefGoogle Scholar
  51. [51]
    DAB. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Weigmann, T.H. Wood, CA. Burrus, IEEE J. Quant. Electr. QE-21, 1462 (1985).Google Scholar
  52. [52]
    DA.B. Miller, J. Henry, A.C. Gossard, J.H. English, Appl. Phys. Lett. 49, 821 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • D. S. Chemla
    • 1
  1. 1.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations