Magneto-Optical Properties of Heterojunctions, Quantum Wells and Superlattices

  • J. C. Maan
Part of the NATO ASI Series book series (NSSB, volume 170)


In a magnetic field the continuous dispersion relations of the bandstructure are split into discrete Landau levels. The energy separation between these Landau levels can be measured optically, and this way information about the bandstructure is obtained. Since transitions are never infinitely sharp in real systems, additional information can be obtained from broadening. In the first part of this paper intraband absorption (cyclotron resonance) in heterojunctions and quantum wells in a magnetic field perpendicular to the layer, with emphasis on the consequences of non-parabolicity will be described. Furthermore several aspects which can contribute to the observed cyclotron linewidth will be mentioned. In the second part a discussion of interband (valence to conduction band) absorption will be given. In particular the effect of the complex valence bandstructure on the experimental results will be described. As in interband absorption both electrons and holes are involved, the effect of their interaction (exciton formation) on the results will be discussed. In the last part interband absorption in a superlattice with a magnetic field parallel to the layers will be discussed. Here a different effect of the magnetic field will be employed, namely that carriers in a magnetic field describe circular orbits in a plane perpendicular to the field, which have an orbit size that can be comparable to the superlattice periodicity. Therefore this type of experiments probes transport through the layers of the superlattice.


Cyclotron Resonance Landau Level Magnetic Field Parallel Orbit Center Super Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    W. Kohn, Phys.Rev. 123, 1242, (1961)ADSMATHCrossRefGoogle Scholar
  2. 2).
    E. Gornik, in “Heterostructures and Semiconductor Superlattices”, ed. G. Allan,G.Bastard,N.Boccara and M.Voos,Springer, Berlin, (1986)Google Scholar
  3. 3).
    W. Zawadzki, in “Two-Dimensional systems, Heterostruetures and Superlattices”, ed. G. Bauer,F. Kuchar and H. Heinrich, Springer, Berlin, (1984) and W. Zawadaki, J.Phys.C. (Solid State Physics), 229, (1983)Google Scholar
  4. 4).
    H.J.A. Bluyssen, J. C. Maan, P. Wyder, L. L. Chang and L. Esaki, Solid State Commun. 31,35,(1979) and ibid, Phys.Rev. B25, 5364, (1982)ADSCrossRefGoogle Scholar
  5. 5).
    U. Merkt, M. Horst, T. Evelbauer, J. P. Kotthaus, Phys.Rev. B34, 7234, (1986)ADSCrossRefGoogle Scholar
  6. 6).
    Y. Guldner, J. P. Vieren, P. Voisin, M. Voos, J. C. Maan, L.L. Chang and L. Esaki, Solid State Commun. 41, 755, (1982)ADSCrossRefGoogle Scholar
  7. 7).
    T. Ahdo, J.Phys.Soc. J. n.,36,959,(1974) and ibid. J.Phys. Soc. Jpn, 38, 989, (1975)Google Scholar
  8. 8).
    G. Abstreiter, P. Kneschaurek, J.P. Kotthaus and J.F. Koch, Phys.Rev.Lett. 32, 104, (1974)ADSCrossRefGoogle Scholar
  9. 9).
    P. Voisin, Y. Guldner, J. P. Vieren, M. Voos, J. C. Maan, P. Delescluse and T. Linh, Physica 117B & 1188, 634, (1983)Google Scholar
  10. 10).
    D. Heitmann, M. Ziegmann and L. L. Chang, Phys.Rev. B34, 7463, (1986)ADSCrossRefGoogle Scholar
  11. 11).
    R. Lassnig, in “Two-Dimensional systems, Heterostructures and Superlattices”, ed. G.Bauer, F.Kuchar and H.Heinrich, Springer, Berlin, (1984)Google Scholar
  12. 12).
    Th. Englert, J. C. Maan, Ch. Uihlein, D. C. Tsui and A. C. Gossard, Solid State Commun. 46, 545, (1983)ADSCrossRefGoogle Scholar
  13. 13).
    R. C. Millar, D. A. Kleinmann, W. T. Tsang and A. C. Gossard, Phys. Rev.B 24, 1134 (1981)ADSCrossRefGoogle Scholar
  14. 14).
    G. Bastard, E. E. Mendez, L. L. Chang and L. Esaki, Phys. Rev. B29, 1588, (1982)Google Scholar
  15. 15).
    P. Dawson, K. J. Moore, G. Duggan, H. I. Ralph and C. T. B. Foxon, Phys.Rev. B34, 6007, (1986)ADSCrossRefGoogle Scholar
  16. 16).
    R. L. Greene and K. K. Bajaj, Solid State Commun. 45, 831, (1983)ADSCrossRefGoogle Scholar
  17. 17).
    F. Ancilotto, A. Fasolino, and J. C. Maan, Proc. 2nd Int.Conf. on Superlattices Gotenborg, 1986, J. of Microstructures and Superlattices, to be published.Google Scholar
  18. 18).
    M. Altarelli, in “Heterostruetures and Semiconductor Superlattices”, ed. G. Allan, G. Bastard, N. Boccara and M. Voos, Springer,Berlin,(1986)Google Scholar
  19. 19).
    J. C. Maan; G. Belle, A. Fasolino, M. Altarelli and K. Ploog, Phys.Rev. B30, 2253, (1984)MathSciNetADSCrossRefGoogle Scholar
  20. 20).
    T. Ando,J.Phys.Soc.Jpn, 39, 411, (1975)ADSCrossRefGoogle Scholar
  21. 21).
    W. Beinvogl, A. Kamsar and J. F. Koch, Phys.Rev. B14, 4274, (1986)Google Scholar
  22. 22).
    J. C. Maan, in “Two-Dimensional systems, Heterostructures and Superlattices”, ed. G. Bauer, F. Kuchar and H. Heinrich, Springer, Berlin, (1984)Google Scholar
  23. 23).
    G. Belle, J. C. Maan and G. Weimann, Solid State Commun. 56, 65 (1985)ADSCrossRefGoogle Scholar
  24. 24).
    T. Duffield, R. Bhat, M. Koza, D. M. Hwang, P. Grabbe and S. J. Allen Jr.,Phys.Rev.Lett. 56, 2724, (1986)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • J. C. Maan
    • 1
  1. 1.Hochfeld MagnetlaborMax-Planck-Institut für FestkörperforschungGrenoble CedexFrance

Personalised recommendations