Optical Properties of Quantum Wells

  • C. Weisbuch
Part of the NATO ASI Series book series (NSSB, volume 170)


The purpose of the present set of lectures is to introduce students to the field of the optical properties of quantum wells (and superlattices ?). As this field has grown out of proportions so as to be covered in three lectures, we have choosen to focus on three areas of the subject which seem to us more appropriate to the aims of the school, namely:
  1. (i)

    The specific aspects of 20 systems concerning optical properties.

  2. (ii)

    A description of the techniques of optical spectroscopy so widely used in 3D systems, and their relative qualities when applied to the field of quantum wells.

  3. (iii)

    The specific design rules and properties of quantum-well lasers (QWLs). As will be seen below, they are quite dominated by “subtle” 2D effects, and QWLs therefore represent a good laboratory to study what are the pros and cons of 2D devices. The discussion of the difficulties encountered with 2D QWLs will then be briefly extended to ID and OD devices.



Dielectric Function Multiple Quantum Well Carrier Capture Confinement Factor Multiple Quantum Well Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Bastard, Electronic States in Heterostructures, this volume. G. Bastard and M. Voos, “Wave Mechanics Applied to Heterostructures”, Editions de Physique, Les Ulis (1987).Google Scholar
  2. 2.
    See e. g. L. Esaki, a Bird’s Eye View on the Evolution of Semiconductor Superlattices and Quantum Wells, IEEE J. Quantum Electron QE-22, 1611 (1987). L. Esaki, The Evolution of Quantum Structures, this volume.Google Scholar
  3. 3.
    E. Kasper, Strained-Layer Superlattices, this volume. G.Cn Osbourn, Strained-Layer Superlattices: A Brief Review, IEEE J. Quantum Electron QE-22, 1677 (1986).Google Scholar
  4. 4.
    See e. g. G.H. Dohler, Doping Superlattices (n-i-p-i Crystals), IEEE J. Quantum Electron QE-22, 1682 (1986).Google Scholar
  5. 5.
    E. Kasper, Strained-Layer Superlattices, this volume. R. People, Physics and Applications of GeSi/Si Strained-Layer Heterostructures, IEEE J. Quantum Electron QE-22, 1696 (1986).Google Scholar
  6. 6.
    A.V. Nurmikko, R.L. Gunshor and L.A. Kolodziezski, IEEE J. Quantum Electron QE-22, 1785 (1986).Google Scholar
  7. 7.
    J.P. Faurie, Molecular Beam Epitaxial Growth and Properties of Hg-Based Microstructures, this volume. J.P. Faurie, Growth and Properties of HgTe-CdTe and other Hg-based Superlattices, IEEE J. Quantum Electron QE-22, 1656 (1986).Google Scholar
  8. 8.
    G. Abstreiter, Light Scattering in Heterostructures, this volume. G. Abstreiter, R. Merlin and A. Pinczuk, Inelastic Light Scattering by Electronic Excitations in Semiconductor Heterostructures, IEEE J. Quantum Electron QE-22, 1771 (1986). M.V. Klein, Phonons in Semiconductor Superlattices, IEEE J. Quantum Electron QE-22, 1760 (1986).Google Scholar
  9. 9.
    D.S. Chemla, Non-Linear Optics and Optoelectronics in Semiconductor Quantum Wells, this volume.Google Scholar
  10. 10.
    J.C. Maan, Magneto-Optical Properties of Heterojunctions, Quantum Wells and Superlattices, this volume.Google Scholar
  11. 11.
    E. Gornik, Energy Relaxation Phenomena in GaAs/GaAlAs Structures, this volume. J. Shah, Hot Carriers in Quasi-2D Polar Semiconductors, IEEE J. Quantum Electron QE-22, 1728 (1986).Google Scholar
  12. 12.
    See e. g. DE.E. Aspnes, Modulation Spectroscopy/Electric Field Effects/on the Dielectric Function of Semiconductors in: “Handbook on Semi-conductors” vol. 2, M. Balkanski vol. ed., T.S. Moss Series ed. North- Holland, Amsterdam (1980).M. Cardona, “Modulation Spectroscopy”, Solid State Phys. Suppl. 11, Academic, New-York (1969).Google Scholar
  13. 13.
    See e. g. H.C. Casey Jr. and M.B. Panish, “Heterostructure Lasers,Part A: Fundamental Principles”, Academic, New-York, 1978.Google Scholar
  14. 14.
    P. Voisin, Optical and Magnetooptical Absorption in Quantum Wells and Superlattices, in “Heterojunctions and Semiconductor Superlattices”, G. Allan, G. Bastard, N. Boccara, M. Lannoo and M. Voos, Springer, Berlin (1986).Google Scholar
  15. 15.
    See e. g. Dimmock, Introduction to the theory of Exciton States in Semi-conductors, in “Semiconductors and Semimetals” Vol. 3, R. K. Willardson and A.C. Beer 9 Academic, New-York (1967).Google Scholar
  16. 16.
    J.J. Hopfield, Theory of the Contribution of Excitons to the Complex Dielectric Constant of Crystals, Phys. Rev. 112, 1555 (1958). J.J. Hopfield, Excitons and Their Electromagnetic Interactions, in, Proc. of the International School of Physics, “Enrico Fermi”, Course 42, Quantum Optics, Academic, New-York (1969).Google Scholar
  17. 17.
    D.S. Chemla, Quasi-Two Dimensional Excitons in GaAs/AlGaAs Semiconductor MQW Structures, Helv. Physica Acta 56, 67 (1983).Google Scholar
  18. 18.
    J.C. Phillips, “Bonds and Bands in Semiconductors”, Academic, New-York (1973).Google Scholar
  19. 19.
    F. Stern, Electrical Transport in Microstructures, this volume.Google Scholar
  20. 20.
    M. Shinada and T. Sugano, Interband Optical Transitions in Extremely Anisotropic Semiconductors: I Bound and Unbound Exciton Absorption, J. Phys. Soc. Japan 21, 1936 (1966).ADSGoogle Scholar
  21. 21.
    See e. g. M. Born, “Atomic Physics” 6th ed., Blackie, London (1957). L. Pauling and E.B. Wilson, “Introduction to Quantum Mechanics”, Mc. Graw Hill, New York 1935. W. Heitler, The Quantum Theory of Radiation, Dover, New-York (1984).Google Scholar
  22. 22.
    F. Stern, Elementary Theory of the Optical Properties of Solids, in “Solid State Physics vol. 15”, F. Seitz and D. Turnbull eds., Academic, New-York (1963).Google Scholar
  23. 23.
    See e. g. M. Asada, A. Karneyama and Y. Suematsu, Gain and Intervalence Band Absorption in QW Lasers, IEEE J. Quantum Electron QE-20, 745 (1984).Google Scholar
  24. 24.
    See e. g. H. Barry Bebb and E.W. Williams, Photoluminescence I: Theory, in “Semiconductors and Semimetals vol. 8”, R.K. Willardson and A.C. Beer, p. 182, Academic, New-York (1972). M. Voos, R.F. Leheny and J. Shah, Radiative Recombination, in Handbook of Semiconductors vol. 2, M. Balkanski vol. T.S. Moss series North Holland, Amsterdam (1980).Google Scholar
  25. 25.
    J.J. Hopfield, Aspects of Polaritons, Proc. Int. Conf. on the Physics of Semiconductors, Kyoto (1966), J. Phys. Soc. Japan 21 suppl., 77 (1966).Google Scholar
  26. 26.
    P. Dawson, G. Duggan, H.I. Ralph and K. Woodridge, Free Excitons in Room Temperature Photoluminescence of GaAs/AlGaAs MQWs, Phys. Rev. B28, 7381 (1983). E. Böttcher, K. Ketterer, D. Bimberg, G. Weimann and W. Schlapp, Excitonic and Electron-Hole Contributions to the Spontaneous Recombination Rate of Injected Charge Carriers in GaAs/AlGaAs MQW lasers at Room Temperature, Appl. Phys. Lett. 50, 1074 (1987). Y. Arakawa, H. Sakaki, M. Nishioka, Y. Yoshino and T. Kamiya, Recombination Lifetime of Carriers in GaAs/GaAlAs QWs near Room Temperature, Appl. Phys. Lett. 46, 519 (1985). J.E. Fouquet and R.D. Burnham, Recombination Dynamics in GaAs/AlGaAs Quantum Well Structure, IEEE J. Quantum Electron. QE-22, 1799 (1986).Google Scholar
  27. 27.
    C. Weisbuch and R.G. Ulbrich, Resonant Light Scattering by Excitonic Polaritons in Semiconductors, in “Light Scattering in Solids III”, M. Cardona and G. Güntherodt eds., Springer, New-York (1982).Google Scholar
  28. 28.
    C. Weisbuch, R.C. Miller, R. Dingle, AC. Gossard and W. Wiegmann, Intrinsic Radiative Recombination from Quantum States in GaAs/AlGaAs MQW structures, Solid State Commun. 37, 219 (1981).Google Scholar
  29. 29.
    A. Nakamura and C. Weisbuch, Resonant Raman Scattering Versus Hot Electron Effects in Excitation Spectra of CdTe, Solid State Electron. 21, 1331 (1978).ADSCrossRefGoogle Scholar
  30. 30.
    R. Planel, A. Bonnot and C. Benoit ä la Guillaume, Excitation Spectra of CdS, Physica Status Solidi (b). 58, 251 (1973).ADSGoogle Scholar
  31. 31.
    C. Weisbuch, Photocarrier Thermalization by Laser Excitation Spectroscopy, Solid State Electron. 21, 179 (1978).ADSCrossRefGoogle Scholar
  32. 32.
    M. Razeghi, J. Nagle and C. Weisbuch, Optical Studies of GalnAs/InP Quantum Wells, Int. Symp. GaAs and Related Compounds, Biarritz (1984), Inst. Phys. Conf. Ser. N° 74, p. 379, Adam Hilger, London (1985).Google Scholar
  33. 33.
    B.V. Shanabrook, O.J. Glembocki and W.T. Beard, Photoreflectance Modulation Mechanisms in GaAs/AlGaAs MQWs, Phys. Rev. B 35, 2540 (1987).Google Scholar
  34. 34.
    C.V. Shank, R.L. Fork, R. Yen, J. Shah, B.I. Greene, A.C. Gossard and C. Weisbuch, Picosecond Dynamics of Hot Carrier Relaxation in Highly Excited MQW Structures, Solid State Commun. 47, 981, (1983)ADSCrossRefGoogle Scholar
  35. 35.
    M.C. Nuss and D.H. Auston, Direct Subpicosecond Measurement of Carrier Mobility of Photoexcited Electrons in GaAs, Proc. Topical Meeting on Picosecond Electronics and Optoelectronics, Incline Village ( 1987 ), Springer, New-York (1987).Google Scholar
  36. 36.
    C.V. Shank, R. Yen and C. Hirlimann, Time-Resolved Reflectivity Measurements of Femtosecond-Optical-Pulse-Induced Phase Transitions in Silicon, Phys. Rev. Lett. 50, 454 (1983).ADSCrossRefGoogle Scholar
  37. 37.
    Y. Masumoto, S. Shionoya and H. Kawaguchi, Picosecond Time-Resolved Study of Excitons in GaAs/AlGaAs MQW structures, Phys. Rev. B29, 2324 (1984). T., Takagahara, Localization and Energy Transfer of Quasi Two-Dimensional Excitons in GaAs/AlAs Quantum-Well Heterostructures, Phys. Rev. B31, 6552 (1985)Google Scholar
  38. 38.
    E.O. Göbel, J. Kuhl and R. Höger, Short Pulse Physics of Quantum Well Structures, J, Lumin. 30, 541 (1985). E.O. Göbel, R. Höger and J. Kuhl, Carrier Dynamics in Quantum Well Structures, MRS-Europe, Strasbourg 1985, p. 53, Editions de Physique, Les Ulis (1985).Google Scholar
  39. 39.
    P.M. Petroff, R.C. Miller, A.C. Gossard and W. Wiegrnann, Impurity Trapping, Interface Structure, and Luminescence of GaAs Quantum Wells grown by MBE, Appl. Phys. Lett. 44, 217 (1984).Google Scholar
  40. 40.
    P.M. Petroff, C. Weisbuch, R. Dingle, A.C. Gossard and W. Wiegmann, Luminescence Properties of GaAs/GaAlAs DH and MQW Superlattices grown by MBE, Appl. Phys. Lett. 38, 965 (1981).Google Scholar
  41. 41.
    See e. g. R.C. Miller and D.A. Kleinman, Excitons in GaAs Quantum Wells, J. Lumin, 30, 520 (1985).Google Scholar
  42. 42.
    R.C. Miller, D.A. Kleinman and A.C. Gossard, Energy-Gap Discontinuities and Effective Masses for GaAs/AlGaAs Quantum Wells, Phys. Rev. B29, 7085 (1984).Google Scholar
  43. 43.
    See e. g. K. Shum, P.P. Ho and R.R. Alfano, Determination of Valence- Band Discontinuity via Optical Transitions in Ultrathin Quantum Wells, Phys. Rev. B 33, 7259 (1986).ADSCrossRefGoogle Scholar
  44. 44.
    P.M. Frijlink and J. Maluenda, MOVPE Growth of GaAlAs/GaAs Quantum-Well Heterostructures, Jpn. J. -Appl. Phys. 21, L574 (1982).ADSCrossRefGoogle Scholar
  45. 45.
    J.A. Brum and G. Bastard, Resonant Capture by Semiconductor Quantum Wells, Phys, Rev. B33, 1420 (1986). J.A. Brum, T. Weil, J. Nagle and B. Vinter, Calculation of Carrier Capture Time of a Quantum Well in Graded-Index Separate Confinement Heterostructures, Phys. Rev. B34, 2381 (1986).ADSCrossRefGoogle Scholar
  46. 46.
    T. Mishima, J. Kasai, M. Morioka, Y. Sawada, Y. Katayama, Y. Shiraki and Y. Murayama, Determination of Bandgap Discontinuity in AlGaAs/GaAs system by Quantum Oscillations of Photoluminescence Intensity, Surf. Science 174, 307 (1986).Google Scholar
  47. 47.
    C. Weisbuch, R. Dingle, A.C. Gossard and W. Wiegmann, Optical Characterization of Interface Disorder in GaAs/GaAlAs MQW Structures, Solid State Commun. 38, 709 (1981).Google Scholar
  48. 48.
    B. Deveaud, J.Y. Emery, A. Chomette, B. Lambert and M. Baudet, Single Monolayer Well Size Fluctuations in the Luminescence of GaAs/GaAlAs Superlattices, Appl. Phys. Lett. 45, 1078 (1984). D.C. Reynolds, K.K. Bajaj, C.W. Litton, P.W. Yu, J. Singh, W.T. Masselink, R. Fischer and H. Morkoc, Determination of Interfacial Quality of GaAs/GaAlAs MQW Structures Using Photoluminescence Spectroscopy, Appl. Phys. Lett. 46, 51 (1985). P.W. Yu, D.C. Reynolds, K.K. Bajaj, C.W. Litton, J. Klem, D. Huang and H. Morkoc, Observation of Monolayer Fluctuations in the Excited States of GaAs/GaAlAs MQW Structures using Photocurrent and Reflections Spectroscopies, Solid State Commun. 62, 41 (1987).Google Scholar
  49. 49.
    G. Bastard, C. Delalande, M.H. Meynadier, P.M. Frijlink and M. Voos, Low Temperature Exciton Trapping on Interface Defects in Semiconductor Quantum Wells, Phys. Rev. B29, 7042 (1984).Google Scholar
  50. 50.
    R.M. Fleming, D.B. McWhan, A.C. Gossard, W. Wiegmann and R.A. Logan, X-Ray Diffraction study of Interdiffusion and Growth in (GaAs)n/(AlAs)m Multilayers, J. Appl. Phys. 51, 357 (1980).Google Scholar
  51. 51.
    P.M. Petroff, Transmission Electron Microscopy of Interfaces in III-V Compounds Semiconductors, J. Vac. Sci. Technol. 14, 973 (1977).ADSGoogle Scholar
  52. 52.
    N. Watanabe and Y. Mori, Ultrathin GaAs/GaAlAs Layers Grown by MOCVD and their Structural Characterization, Surf. Science 174, 10 (1986).Google Scholar
  53. 53.
    M. Tanaka, H. Sakaki, J. Yoshino and T. Furuta, Photoluminescence and Absorption Linewidth of Extremely Flat GaAs/AlAs QWs Prepared by MBE including Interrupted Deposition for Atomic Layer Smoothing, Surf. Science 174, 65 (1986). T. Fukunaga, K.L.I. Kobayashi and H. Nakashima, Reduction of Well Width Fluctuation in GaAs/AlGaAs SQW by Growth Interruption during MBE, Surf. Science 174, 71 (1986). W.T. Tsang and R.C. Miller, GaAs/AlGaAs Quantum Wells and Double Heterostructure Lasers grown by Chemical Beam Epitaxy, J. Cryst. Growth 77, 55 (1986).Google Scholar
  54. 54.
    R.C. Miller, C.W. Tu, S.K. Sputz and R.F. Kopf, Photoluminescence Studies of the Effect of Interruption during the growth of single GaAs/AlGaAs Quantum Wells, Appl. Phys. Lett. 49, 1245 (1968).Google Scholar
  55. 55.
    D.F. Welch, G.W. Wicks and L.F. Eastman, Luminescence Broadening Mechanisms in GalnAs/InAlAs Quantum Wells, Appl. Phys. Lett. 46, 991 (1985).Google Scholar
  56. 56.
    E. Cohen, Exciton Dynamics in Weakly Disordered Systems, in “Proc. Int. Conf. on the Physics of Semiconductors”, San Francisco, 1384, D.J. Chadi and W.A. Harrison eds., p. 1221, Springer, New-York (1985).Google Scholar
  57. 57.
    T.S. Kuan, T.F. Kuech, W.I. Wang and E.L. Wilkie, Long-Range Order in AlGaAs, Phys. Rev. Lett. 54, 201 (1985).ADSGoogle Scholar
  58. 58.
    See the review by J. Hegarty and M. Sturge, Studies of Exciton Localization in QW Structures by Nonlinear Optical Techniques, J. Opt. Soc. Am. B2, 1143 (1985).Google Scholar
  59. 59.
    J. Hegarty, M.D. Sturge, C. Weisbuch, A.C. Gossard and W. Wiegmann, Resonant Rayleigh Scattering from an Inhomogeneously Broadened Transition: A New Probe of the Homogeneous Linewidth, Phys. Rev. Lett. 49, 930 (1982).ADSGoogle Scholar
  60. 60.
    L. Schultheis, A. Honold, J. Kühl, K. Köhler and C.W. Tu, Optical Dephasing of Homogeneously Broadened 2D Exciton Transition in GaAs Quantum Wells, Phys. Rev. B34, 9027 (1986).Google Scholar
  61. 61.
    See e. g. W.T. MasseTink, Y.C. Chang, H. Morkoc, D.C. Reynolds, C.W. Litton, K.K. Bajaj and P.W. Yu, Shallow Impurity Levels in AlGaAs/GaAs Semiconductor Quantum Wells, Solid State Electron. 29, 205 (1986) and references therein.Google Scholar
  62. 62.
    A. Pinczuk, J. Shak, R.C. Miller, A.C. Gossard and W. Wiegmann, Optical Processes of 2D Electron Plasma in GaAs/GaAlAs Heterostructures, Solid State Commun. 50, 735 (1984).Google Scholar
  63. 63.
    R. Sooryakumar, A. Pinczuk, A.C. Gossard, D.S. Chemla and L.J. Sham, Tuning of the Valence-Band Structure of GaAs Quantum Wells by Uniaxial Stress, Phys. Rev. Lett. 58, 1150 (1987).ADSGoogle Scholar
  64. 64.
    W.T. Tsang, Heterostructure Semiconductor Lasers Prepared by MBE, IEEE J. Quantum Electronics QE-20, 1119 (1984).Google Scholar
  65. 65.
    C. Weisbuch and J. Nagle, The Physics of the Quantum Well Laser, rn “Optical Properties of Narrow-Gap Low-Dimensional Structures”, C.M. Sotomayor Torres, J.C. Portal, J.C. Maan and R.A. Stradling, NATO Series ASI: Series B: Physics vol. 152, 251, Plenum, New-York (1987).Google Scholar
  66. 66.
    M. Yamanishi and I. Suemune, Comment on Polarization-Dependent Momentum Matrix Elements in Quantum Well Lasers, Jpn. J. Appl. Phys. 23, L35 (1984).Google Scholar
  67. 67.
    M. Asada and Y. Suematsu, Density-Matrix Theory of Semiconductor Lasers with Relaxation Broadening Model-Gain and Gain-Suppression in Semiconductor Lasers, IEEE J. Quantum Electron. QE-21, 434 (1985).Google Scholar
  68. 68.
    M. Yamada, S. Ogita, M. Yamagishi and K. Tabata, Anisotropy and Broadening of Optical Gain in a GaAs/AlGaAs MQW Laser, IEEE J. Quantum Electron. QE-21, 640 (1985).Google Scholar
  69. 69.
    J. Nagle, S. Hersee, M. Krakowski, T. Weil and C. Weisbuch, Threshold current of SQW Lasers: The Role of the confining Layers, Appl. Phys. Lett. 49, 1325 (1986).Google Scholar
  70. 70.
    J. Nagle, S. Hersee, M. Razeghi, M. Kratowski, B. de Cremoux and C. Weisbuch, Properties of 2D Quantum Well Lasers, Surf. Science 174, 148 (1986).Google Scholar
  71. 71.
    J. Nagle, unpublishedGoogle Scholar
  72. 72.
    B. Sermage, D.S. Chemla, D. Sivco and A.Y. Cho, Comparison of Auger Recombination in GalnAs/AlInAs MQW structure and in Bulk GaAs IEEE J. Quantum Electron. QE-22, 774 (1986).Google Scholar
  73. 73.
    Y. Arakawa, K. Vahala and A. Yariv, Quantum Noise and Dynamics in Quantum Well and Quantum Wire Lasers, Appl. Phys. Lett. 45, 950 (1984). Y. Arakawa and A. Yariv, Theory of Gain, Modulation Response and Spectral Linewidth in AlGaAs Quantum Well Lasers, IEEE J. Quantum Electron. QE-21, 1666 (1985).Google Scholar
  74. 74.
    K. Uomi, N. Chinone, T. Ohtoshi and T. Kajimura, High Relaxation Oscillation Frequency (beyond 10 GHz) of GaAlAs MQW Lasers, Jpn. J. Appl. Phys. 24, L 539 (1985).Google Scholar
  75. 75.
    M.G. Burt, Linewidth Enhancement Factor for Quantum Well Lasers, Electron, Lett. 20, 27 (1984).CrossRefGoogle Scholar
  76. 76.
    S. Noda, K. Kojima, K. Kyuma, K. Hamanaka and T. Nakayama, Reduction of Spectral Linewidth in AlGaAs/GaAs DFB Lasers by a MQW structure, Appl. Phys. Lett. 50, 863 (1987).Google Scholar
  77. 77.
    R.D. Burnham, W. Streifer and T.L. Paoli, Growth and Characterization of AlGaAs/GaAs QW Lasers, J. Cryst. Growth 68, 370 (1984).Google Scholar
  78. 78.
    See e. g. D.G. Deppe, G.S. Jackson, N. Holonyak Jr., R.D. Burnham and R.L. Thornton, Coupled-Stripe AlGaAs/GaAs QW lasers defined by Impurity-Induced (Si) Layer Disordering, Appl, Phys. Lett. 50, 632 (1987) and references therein.Google Scholar
  79. 79.
    Y. Suzuki, Y. Horikoshi, M. Kobayashi and H. Okamoto, Fabrication of Ga AlAs Window-Stripe MQW Heterostructure Lasers using Zn Diffusion- Induced Alloying, Electronics Lett. 20, 383 (1984).ADSCrossRefGoogle Scholar
  80. 80.
    J. Cibert, P.M. Petroff, G.J. Dolan, S.J. Pearton, A.C. Gossard and J.H. English, Optically Detected Carrier Confinement to One and Zero Dimension in GaAs Quantum Well Wires and Boxes, Appl. Phys. Lett. 49, 1275 (1986). P.M. Petroff, J. Cibert, A.C. Gossard, G.J. Dolan and C.W. Tu, Interface Structure and Properties of Quantum Wells and Quantum Boxes, J. Vac. Sci. and Technol. (1987).Google Scholar
  81. 81.
    See e. g. H. Okamoto, Semiconductor Quantum-Well Structures for Opto-electronics - Recent Advances and Future Prospects - Jpn. J. Appl. Phys. 26, 315 (1987) and references therein.Google Scholar
  82. 82.
    Y. Tokuda, N. Tsukada, K. Fujiwara, K. Hamanaka and T. Nakayama, Widely Separate Wavelength Switching of SQW Laser Diode by Injection-Current Control, Appl. Phys. Lett. 49, 1629 (1986).Google Scholar
  83. 83.
    Y. Arakawa and H. Sakaki, Multidimensional Quantum Well Laser and Temperature Dependance of its Threshold Current, Appl. Phys. Lett. 40, 939 (1982) Y. Arakawa and A. Yariv, Quantum Well Structures: Gain, Spectra, Dynamics, IEEE J. Quantum Electron, QE-22, 1887 (1986).Google Scholar
  84. 84.
    M. Asada, Y. Miyamoto and Y. Suematsu, Gain and the Threshold of Three- Dimensional Quantum-Box Lasers, IEEE J. Quantum Electron. QE-22, 1915 (1986).Google Scholar
  85. 85.
    M.A. Reed, R.J. Bate, K. Bradshaw, W.M. Duncan, W.R. Frensley, J.W. Lee and H.D. Shih, Spatial Quantization in GaAs/GaAlAs Multiple Quantum Dots, J. Vac. Sci. Technol. B4, 358 (1986).Google Scholar
  86. 86.
    K. Kash, A. Scherer, J.M. Worlock, H.G. Craighead and M.C. Tamargo, Optical Spectroscopy of Ultrasmall Structures Etched from Quantum Wells, Appl. Phys. Lett. 49, 1043 (1986).Google Scholar
  87. 87.
    Y. Miyamoto, M. Cao, Y. Shingai, K. Furuya, Y. Suematsu, K.G. Ravikumar and S. Arai, Light Emission from Quantum-Box Structure by Current Injection, Jpn. J. Appl. Phys. 26, L225 (1987).Google Scholar
  88. 88.
    Lo Brus, Zero-Dimensional Excitons in Semiconductor Clusters, IEEE J. Quantum Electron. QE-22, 1909 (1986).Google Scholar
  89. 89.
    Y. Arakawa, H. Sakaki, M.N. Nishioka, H. Okamoto and N. Miura, Spontaneous Emission Characteristics of Quantum Well Lasers in Strong Magnetic Fields. An Approch to Quantum Box Light Source, Jpn. J. Appl. Phys, 22, L804 (1985).Google Scholar
  90. 90.
    Y. Arakawa, K. Vahala, A. Yariv and K. Lau, Enhanced Modulation Bandwidth of GaAlAs Double Heterostructure Lasers in High Magnetic Fields: Dynamic Response with Quantum Wire effects, Appl. Phys. Lett. 47, 1142 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • C. Weisbuch
    • 1
  1. 1.Laboratoire Central de RechercheThomson CSFFrance

Personalised recommendations