High Field Magnetotransport-Lecture III: The Fractional Quantum Hall Effect

  • R. J. Nicholas
  • R. G. Clark
  • A. Usher
  • J. R. Mallett
  • A. M. Suckling
  • J. J. Harris
  • C. T. Foxon
Part of the NATO ASI Series book series (NSSB, volume 170)


The existence of the fractional quantum Hall effect (FQHE) is taken to be evidence for the formation of a new highly correlated ground state of a two dimensional electron gas. This occurs at very low temperatures, in high magnetic fields, and in systems where there is only a very small amount of disorder present. The main experimental observations are that minima are observed in the electrical resistivity component ρxx, at fractional Landau level occupancies ν=nh/eB=p/q, where p is an integer and q is an odd integer [1–9]; while corresponding Hall plateaus are seen at quantized Hall resistivity values of h/νe2. To date fractional states have been reported at ν= 1/3, 1/5, 2/5, 2/7, 3/7 and 4/9, and the equivalent ‘hole’ analogous of these states have been observed at occupancies ν= 1-(p/q). These states occur when all of the electrons lie in the lowest spin split Landau level, but it has recently been shown that they can exist in a similar manner in the upper spin state at occupancies of the form ν= 1+(p/q). Once ν>2 the electrons occupy the second Landau level. At this point the experimental position becomes less clear, with some reports of the observation of 7/3 and 8/3 states [3,4], and some suggestions that even denominator fractions may occur [8,9]. The significance of these results is that the existence of minima in the resistivity and quantized Hall plateaus may be shown, by using the gauge invariance arguements of Laughlin [10], to result from the formation of a mobility gap in the density of states. In other words the degeneracy of the individual Landau levels for isolated electrons has been lifted by the residual Coulomb interactions, leading to the formation of an energy gap between the ground and excited states of the system.


Landau Level Fractional State Flux Quantum Mobility Edge Resistivity Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.C. Tsui, H.L. Stoermer and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    A.M. Chang, P. Berglund, D.C. Tsui, H.L. Stoermer and J.C.M. Hwang, Phys. Rev. Lett. 53 997 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    E.E. Mendez, L.L/Thang, M. Heiblum, L. Esaki, M. Naughton, K. Martin and J. Brooks, Phys. Rev. B30, 7310 (1984)Google Scholar
  4. 4.
    G. Ebert, K. v. Klitzing, J.C. Maan, G7 Remenyi, C. Probst, G. Weimann and K. Schlapp, J. Phys. C17, L775 (1984)Google Scholar
  5. 5.
    G.S. Boebinger, A.M. Chang, H.L. Stoermer and D.C. Tsui, Phys. Rev. Lett. 55, 1606 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    G.S. Boebinger, A.M. Chang, H.L. Stoermer and D.C. Tsui, Phys. Rev. B32, 4268 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    J. Wakabayashi, S. Kawajii, J. Yoshino and H. Sakaki, Surf. Sci. 170, 136 (1986)Google Scholar
  8. 8.
    R.G. Clark, R.J. Nicholas, A. Usher, C.T. Foxon and J.J. Harris, Surf. Sci. 170, 141 (1986)ADSCrossRefGoogle Scholar
  9. 9.
    R.J. Nicholas, R.G. Clark, A. Usher, C.T. Foxon and J.J. Harris, Solid State Commun. 60, 183 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    R.B. Laughlin, Phys.Hfev. B23, 5632 ( 1981ADSGoogle Scholar
  11. 11.
    R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983)ADSCrossRefGoogle Scholar
  12. 12.
    R.B. Laughlin, Surf. Sci. 142, 163 (1984)ADSCrossRefGoogle Scholar
  13. 13.
    R.B. Laughlin, in Solid State Sciences (Springer Verlag) 53, p. 279 (1984)Google Scholar
  14. 14.
    F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983)MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    B.I. Halperin, Phys. Rev. Lett. 577 1583, 2390 (1984)ADSCrossRefGoogle Scholar
  16. 16.
    A.H. MacDonald and S.M. Girvin, Wys. Rev. B33, 4414 (1986)ADSCrossRefGoogle Scholar
  17. 17.
    S.M. Girvin, Phys. Rev. B30, 558 (1984)MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    A.H. MacDonald, G.C. Aers and M.W.C. Dharma-wardana, Phys. Rev. B31, 5529 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    R. Morf and B.I. Halperin, Phys. Rev. B33, 2221 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    S.M. Girvin, A.H. MacDonald and P.M. Platzman, Phys. Rev. B33, 2481 (1986)ADSGoogle Scholar
  21. 21.
    F.D.M. Haldane and E.H. Rezayi, Phys. Rev. Lett. 54, 237 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    R. Tao and D.J. Thouless, Phys. Rev. B28, 1142 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    R. Tao, Phys. Rev. B29, 635 (1984)Google Scholar
  24. 24.
    S. Kivelson, C. Kallin, D.P. Arovas and J.R. Schrieffer, Phys. Rev. Lett. 56, 873 (1986)ADSCrossRefGoogle Scholar
  25. 25.
    R. Keiper and O. Zeip, Phys. Stat. Solidi 133b, 769 (1986)ADSCrossRefGoogle Scholar
  26. 26.
    C.T. Foxon, J.J. Harris, R.G. Wheeler and D.E. Lacklison, J.Vac.Sci, and Technol. B4, 511 (1986)ADSCrossRefGoogle Scholar
  27. 27.
    R.J. Nicholas, R.G. Clark, A. Usher, J.R. Mallett, A.M. Suckling, J.J. Harris and C.T. Foxon, in “Two-Dimensional system: Physics and New Devices”, Ed. G. Bauer, F. Kuchar and H. Heinrich, Solid State Sciences 67, p. 194 (Springer Verlag) 1986Google Scholar
  28. 28.
    R.G. Clark, R.J. Nicholas, M.A. Brummell, A. Usher, S. Collocott, J.C. Portal and F. Alexandre, Solid State Commun. 56, 173 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    R.J. Haug, K. v. Klitzing and K. Ploog, Phys. Rev. 8, in press (1987)Google Scholar
  30. 30.
    F.C. Zhang and S. Das Sarma, Phys. Rev. B33, 2903 (1986)ADSCrossRefGoogle Scholar
  31. 31.
    R.J. Haug, K. v. Klitzing, R.J. Nicholas and G. Weimann, to be published (1987)Google Scholar
  32. 32.
    D.J. Yoshioka, J. Phys. Soc. Japan 55, 237 (1982)Google Scholar
  33. 33.
    Y. Ono, J. Phys. Soc. Japan 51, 237 (1982)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • R. J. Nicholas
    • 1
  • R. G. Clark
    • 1
  • A. Usher
    • 1
  • J. R. Mallett
    • 1
  • A. M. Suckling
    • 1
  • J. J. Harris
    • 2
  • C. T. Foxon
    • 2
  1. 1.Clarendon LaboratoryOxfordUK
  2. 2.Philips Research LaboratoriesRedhill, SurreyUK

Personalised recommendations