Advertisement

A Perspective in Quantum-Structure Development

  • L. Esaki
Part of the NATO ASI Series book series (NSSB, volume 170)

Abstract

In 1969, research on quantum structures was initiated with a proposal of an “engineered” semiconductor superlattice by Esaki and Tsu (1) (2). In anticipation of advancement in epitaxy, we envisioned two types of superlattices with alternating ultrathin layers: doping and compositional, as shown at the top and bottom of Figure 1, respectively.

Keywords

Resonant Tunneling Stark Shift Hall Resistance Double Barrier Super Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Esaki and R. Tsu, “Superlattice and negative conductivity in semiconductors,” IBM Research Note RC-2418 (1969).Google Scholar
  2. 2.
    L. Esaki and R.Tsu, “uperlattice and negative differential conductivity in semiconductors,” IBM J. Res. Develop. 14: 61 (1970).CrossRefGoogle Scholar
  3. 3.
    D. Bohm,“ Theory:” (Prentice Hall, Englewood Cliffs, N.J. 1951 ), p. 283.Google Scholar
  4. 4.
    L. Esaki,“ journey into tunneling,” Les Prix Nobel en 1973, Imprimerie Royale, P.A. Norstedt S Soner, Stockholm 1974, p. 66.Google Scholar
  5. 5.
    L. Esaki, L.L. Chang, and R. Tsu, “A one-dimensional ‘superlattice’ in semiconductors” Proceedings of the 12th International Conference on Low Temperature Physics, Kyoto, Japan, 1970 (Keigaku Publishing Co.,Tokyo, Japan), p. 551.Google Scholar
  6. 6.
    A.E. Blakeslee and C.F. Aliotta, “Man-made superlattice crystals,” IBM J. Res. Develop. 14: 686 (1970).Google Scholar
  7. 7.
    L. Esaki, L.L. Chang, W.E. Howard, and V.L. Rideout, “Transport properties of a GaAs-GaAlAs superlattice,” Proceedings of the 11th International Conference on the Physics of Semiconductors, Warsaw, Poland, 1972, edited by the Polish Academy of Sciences (PWN-Polish Scientific Publishers, Warsaw, Poland ), p. 431.Google Scholar
  8. 8.
    R. Tsu and L. Esaki, “Nonlinear optical response of conduction electrons in a superlattice” Appl. Phys. Lett. 19: 246 (1971).Google Scholar
  9. 9.
    L. Esaki, “Semiconductor Superlattices and Quantum Wells” Proceedings of the 17th International Conference on the Physics of Semiconductors, San Francisco, August, 1984, edited by J.D. Chadi and W.A. Harrison (Springer-Verlag, New York, 1985), p.473; IEEE J. Quantum Electron., QE-22: 1611 (1986).Google Scholar
  10. 10.
    A. C. Gossard, “Growth of Microstructures by Molecular Beam Epitaxy” IEEE J. Quantum Electron., QE-22: 1649 (1986)Google Scholar
  11. 11.
    R. Tsu and L. Esaki, “Tunneling in a finite superlattice,” Appl. Phys. Lett. 22: 562 (1973).ADSCrossRefGoogle Scholar
  12. 12.
    L.L. Chang, L. Esaki, and R. Tsu, “Resonant tunneling in semi-conductor double barriers” Appl. Phys. Lett. 24: 593 (1974).Google Scholar
  13. 13.
    L. Esaki and L.L. Chang, “New transport phenomenon in a semi-conductor ‘superlattice’” Phys. Rev. Lett. 33: 495 (1974).Google Scholar
  14. 14.
    F. Capasso, K. Mohammed and A. Y. Cho, “Resonant tunneling through double barriers” IEEE J. Quantum Electron., QE-22: 1853 (1986).Google Scholar
  15. 15.
    E.E. Mendez, W.I. Wang, B. Ricco, and L. Esaki, “Resonant Tunneling of holes in AlAS-GaAs-AlAS heterostructures” Appl. Phys. Lett. 47: 415 (1985).Google Scholar
  16. 17.
    R. Dingle, A.C. Gossard, and W. Wiegmann, “Direct observation of superlattice formation in a semiconductor heterostructure” Phys Rev. Lett. 34: 1327 (1975).Google Scholar
  17. 18.
    J.P. van der Ziel, R. Dingle, R.C. Miller,W. Wiegmann, and W.A. Nordland Jr., “Laser oscillation from quantum states in very thin GaAs - Al0 2Gao es multilayer structures” Appl. Phys. Lett. 26: 463 (1975).Google Scholar
  18. 19.
    Y. Arakawa and A. Yariv, “Quantum well lasers” IEEE J. Quantum Electron., QE-22: 1887 (1986)Google Scholar
  19. 20.
    R. Tsu, L.L. Chang, G.A. Sai-Halasz, and L. Esaki, “Effects of quantum states on the photocurrent in a superlattice” Phys. Rev. Lett. 34: 1509 (1975).ADSCrossRefGoogle Scholar
  20. 21.
    B. Deveaud, J. Shah, T. C. Damen, B. Lambert and A. Regreny, “Bloch transport of electrons and holes in superlattice mini- bands: direct measurement by subpicosecond luminescence spectroscopy” Phys. Rev. Lett. 58: 2582 (1987).Google Scholar
  21. 22.
    E.E. Mendez, G Bastard, L.L. Chang, and L. Esaki, “Effect of an electric field on the luminescence of GaAs quantum wells” Phys. Rev. B 26: 7101 (1982).ADSCrossRefGoogle Scholar
  22. 23.
    L. Vina, R. T. Collins, E. E. Mendez and W. I. Wang, “Excitonic coupling in GaAs/GaAlAs quantum wells in an electric field” Phys. Rev. Lett. 58: 832 (1987).Google Scholar
  23. 24.
    D.S. Chemla, T.C. Damen, D.A.B. Miller, A.C. Gossard, and W. Wiegmann, “Electroabsorption by Stark effect on room-temperature excitons in GaAs/GaAlAs multiple quantum well structures,” Appl. Phys. Lett. 42: 864 (1983).Google Scholar
  24. 25.
    D.A.B. Miller, J.S. Weiner, and D.S. Chemla, “Electricfield dependence of linear optical properties in quantum well structures” IEEE J. Quantum Electron., QE-22: 1816 (1987).Google Scholar
  25. 26.
    P. Manuel, G.A. Sai-Halasz, L.L. Chang, Chin-An Chang, and L. Esaki, “Resonant Raman scattering in a semiconductor superlattice,” Phys. Rev. Lett. 37: 1701 (1976).Google Scholar
  26. 27.
    G. Abstreiter, R. Merlin, and A. Pinczuk, “Inelastic light scattering by electronic excitations in semiconductor heterostructures” IEEE J. Quantum Electron., QE-22: 1771 (1987).Google Scholar
  27. 28.
    C. Colvard, R. Merlin, and M.V. Klein, and A.C. Gossard, “Observation of folded acoustic phonons in a semiconductor superlattice,” Phys. Rev. Lett. 45: 298 (1980).Google Scholar
  28. 29.
    M.V. Klein, “Phonons in semiconductor superlattices” IEEE J. Quantum Electron., QE-22: 1760 (1987)Google Scholar
  29. 30.
    R. Dingle, H.L. Stormer, A.C. Gossard, W. Wiegmann, “Electron mobilities in modulation-doped semiconductor heterojunction superlattices,” Appl. Phys. Lett. 33: 665 (1978).ADSCrossRefGoogle Scholar
  30. 31.
    M. Abe, T. Mimura, K. Nishiuchi, A. Shibatomi and M. Kobayashi, “Recent advances in ultra-high-speed HEMT technology” IEEE J. Quantum Electron., QE-22: 1870 (1986)Google Scholar
  31. 32.
    L. L. Chang, H. Sakaki, C. A. Chang, and L. Esaki, “Shubnikov-de Haas oscillations in a semiconductor superlattice” Phys. Rev. Lett. 38: 1489 (1977).Google Scholar
  32. 33.
    K. von Klitzing, G. Doreda, and M. Pepper, “New method for high- accuracy determination of the fine-structure constant based on quantized hall resistance,” Phys. Rev. Lett. 45: 494 (1980).Google Scholar
  33. 34.
    D.C. Tsui and A.C. Gossard, “Resistance standard using quantization of the Hall resistance of GaAs - AlxGa-1-xAs heterostructures Appl. Phys. Lett. 38: 550 (1981).Google Scholar
  34. 36.
    G.A. Sai-Halasz, R. Tsu,and L.Esaki, “A new semiconductor superlattice,” App. Phys. Lett. 30: 651 (1977); G.A. Sai-Halasz, L. Esaki, and W.A. Harrison, ”InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition,” Phys. Rev. B 18: 2812 (1978).Google Scholar
  35. 37.
    L.L. Chang, N.J. Kawai, Q.A. Sai-Halasz, R. Ludeke, and L. Esaki, “Observation of semiconductor-semimetal transition in InAs-GaSb superlattices” Appl. Phys. Lett. 35: 939, (1979).Google Scholar
  36. 38.
    Y. Guldner, J.P. Vieren, P. Voisin, M. Voos, L.L. Chang, and L. Esaki, “Cyclotron resonance and far-infrared magneto-absorption experiments on semimetallic InAs-GaSb superlattices,” Phys. Rev. Lett. 45: 1719, (1980).Google Scholar
  37. 39.
    G. Bastard, E.E. Mendez, L.L. Chang, L. Esaki, “Self-consistent calculations in InAs-GaSb heterojunctions,” J. Vac. Sci. Technol. 21: 531 (1982).ADSCrossRefGoogle Scholar
  38. 40.
    H. Munekata, E.E. Mendez, Y. Iye, and L. Esaki, “Densities and mobilities of coexisting electrons and holes in MBE grown GaSb-InAs-GaSb quantum well,” Surf. Sci. 174: 449 (1986)ADSCrossRefGoogle Scholar
  39. 41.
    E.E. Mendez, L. Esaki, and L.L. Chang, “Quantum Hall effect in a two-dimensional electron hole gas,”Phys. Rev. Lett. 55: 2216 (1985).ADSCrossRefGoogle Scholar
  40. 42.
    T. P. Smith and H. Munekata, private communication.Google Scholar
  41. 43.
    G.H. Dohler, H. Kunzel, D. Olego, K. Ploog, P. Ruden, H.J. Stolz, and G. Abstreiter, “Observation of tunable band gap and two- dimensional subbands in a novel GaAs superlattice,” Phys. Rev. Lett. 47: 864 (1981).ADSCrossRefGoogle Scholar
  42. 44.
    J.H. van der Merwe, “Crystal interfaces,” J. Appl. Phys. 34: 117 (1963).ADSMATHCrossRefGoogle Scholar
  43. 45.
    G.C. Osbourn, R.M. Biefeld and P.L. Gourley, “A GaAsxP1-x/GaP strained-layer superlattice,” Appl. Phys. Lett. 41: 172 (1982).Google Scholar
  44. 46.
    E. Kasper, H. J. Herzog and H. Kibbel, “A one-dimensional SiGe superlattice grown by UHV epitaxy,” Appl. Phys. 8: 199 (1975).Google Scholar
  45. 47.
    H. M. Manasevit, I. S. Gergis, and A. B. Jones, “Electron mobility enhancement in epitaxial multilayer Si - Si-1-x Gex alloy films on (100) Si,” Appl. Phys. Lett. 41: 464 (1982).Google Scholar
  46. 48.
    J.C. Bean, L.C. Feldman, A.T. Fiory, S. Nakahara, and J.D. Robinson, “GexSi-1-x/Si strained-layer superlattice grown by molecular beam epitaxy,” J. Vac. Sci. Technol. A2, 436 (1984).Google Scholar
  47. 49.
    A.V. Nurmikko, R.L. Gunshor and L.A. Kolodziejski, “Optical Properties of CdTe/CdMnTe multiple quantum wells” IEEE J. Quantum Electron. QE-22: 1785 (1986)Google Scholar
  48. 50.
    A.C. Gossard, P.M. Petroff, W. Weigmann, R. Dingle, and S. Savage, “Epitaxial structures with alternate-atomic-layer composition modulation,” Appl. Phys. Lett. 29: 323 (1976).ADSCrossRefGoogle Scholar
  49. 51.
    H. Temkin, G.J. Dolan, M.B. Parish, and S.N.G. Chu, “Low-temperature photoluminescence from InGaAs/InP quantum wires and boxes” Appl. Phys. Lett. 50: 413 (1987).Google Scholar
  50. 52.
    H. Sakaki, “Scattering suppression and high-mobility effect of size- quantized electrons in ultrafine semiconductor wire structures” Jpn. J. Appl. Phys. 19: L735 (1980).Google Scholar
  51. 53.
    Y-C Chang, L. L. Chang and L. Esaki, “A new one-dimensional quantum well structure” Appl. Phys. Lett. 47: 1324 (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • L. Esaki
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations