Optical Techniques and Experimental Investigation of Diffusion Processes in Disordered Media

  • P. Evesque
  • C. Boccara
Part of the Ettore Majorana International Science Series book series (EMISS, volume 46)


Different diffusion processes in disordered media will be investigated using optical methods and interpreted in the light of new theoretical approaches based on fractals:

We will investigate heat diffusion processes in disordered materials by heating the surface of the sample with a pulsed laser and by determining the time dependence of the surface temperature. Much care will be taken to describe the properties of the surface temperature when this surface is either tortuous or fractal. New theoretical results will be given.

In the case of naphthalene D8 crystal doped with naphthalene H8, two triplet excitations which meet together fuse in a singlet state which instantaneously luminesces. Time resolved spectroscopy will allow us to determine the time dependence of the rate of fusion. The results will be interpreted in the light of the percolation theory inside and outside the critical region.

Time resolved spectroscopy and transient grating experiments will be used to investigate the geometry of the pore space of a porous material which is called vycor. We will discuss the efficiency fo each of these two methods to determine the tortuosity of the pore space.

Determination of the state density of an amorphous semiconductor will be performed by a photothermal detection of absorption. This technique is more sensitive than classical ones when absorption is small. It is then peculiarly efficient in the case of the state density in the forbidden gap.


Fractal Dimension Malachite Green Heat Diffusion Percolation Model Energy Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.S. Carlsraw, and J.C. Jaeger, “Conductor of heat in solids”, Oxford Clarendon (1959)Google Scholar
  2. 2.
    B.K. Bein, S. Krieger and J. Pelge, Can. J. Phys. 64, 1208 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    M. Hlavacek, Arch. Mech. (Varszawa), 32, 491 (1980)MATHGoogle Scholar
  4. 4.
    B. Mandelbrot, “The fractal geometry of nature”, Freeman, New York (1983) and “Les objets fractals”, Flammarion, Paris (1975)Google Scholar
  5. 5.
    R. Orbach, Science, 231, 814 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    R. Rammal, G. Toulouse, J. de Physique (Paris) Lettres, 44, L-13 (1983)Google Scholar
  7. 7.
    R. Pynn, and A. Skjeltorp, “Scaling phenomena in disordered systems”, edit. NATO, ASI series Plenum (1985)Google Scholar
  8. 8.
    H.E. Stanley, and N. Ostrowsky, “On growth and form” edit. NATO ASI series, Nijhoff Amsterdam (1985)Google Scholar
  9. 9.
    R. Zallen, “The Physics of amorphous materials”, John Wiley (1983)Google Scholar
  10. 10.
    S. Alexander, and R. Orbach, J. de Physique (Paris) Lettres, 43, L-625 (1982)Google Scholar
  11. 11.
    C.A. Hutchinson Jr, and B.W. Magnum, J. Chem. Phys. 34, 908 (1961)ADSCrossRefGoogle Scholar
  12. 12.
    M. Schwoerer and H.C. Wolf, Mol. Cryst. 3, 177 (1967)CrossRefGoogle Scholar
  13. 13.
    B.J. Botter, C.J. Monhof, J. Schmidt, and J.H. van der Waals, Chem. Phys. Lett. 43, 210 (1976)ADSCrossRefGoogle Scholar
  14. 14.
    D.W.J. Cruickshank, Acta Crystallogr. 10, 504 (1957)CrossRefGoogle Scholar
  15. 15.
    P. Reineker, D. Richard, and U. Schmid, J. Chem. Phys. 76, 5245 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    U. Doberer and H. Port, Chem. Phys. Lett. 85, 253 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    D.M. Hanson, J. Chem. Phys. 52, 3409 (1970)ADSCrossRefGoogle Scholar
  18. 18.
    C.L. Braun and H.C. Wolf, Chem. Phys. Lett. 9, 260 (1971)ADSCrossRefGoogle Scholar
  19. 19.
    Ph. Pee, J.P. Lemaistre, F. Dupuy, R. Brown, and Ph. Kottis, Chem. Phys. 64, 389 (1982)CrossRefGoogle Scholar
  20. 20.
    B.J. Botter, A.J. van Strien, and J. Schmidt, Chem. Phys. Lett. 49, 39 (1977)ADSCrossRefGoogle Scholar
  21. 21.
    R. Kopelman, E.M. Monberg, F.W. Ochs, and P.N. Prasad, J. Chem. Phys. 62, 292 (1975)ADSCrossRefGoogle Scholar
  22. 22.
    D.C. Ahlgren, E.M. Monberg, and R. Kopelman, Chem. Phys. Lett. 64, 122 (1979)ADSCrossRefGoogle Scholar
  23. 23.
    R. Kopelman, E.M. Monberg, and F.W. Ochs, Chem. Phys. 19, 413 (1979)CrossRefGoogle Scholar
  24. 24.
    E.M. Monberg and R. Kopelman, Chem. Phys. Lett. 58, 492 (1978)ADSCrossRefGoogle Scholar
  25. 25.
    J. Klafter, and J. Jortner, J. Chem. Phys. 71, 2210 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    J. Klafter, and J. Jortner, Chem. Phys. Lett. 60, 5 (1978)ADSCrossRefGoogle Scholar
  27. 27.
    J. Klafter, and J. Jortner, Chem. Phys. Lett. 49, 410 (1977)ADSCrossRefGoogle Scholar
  28. 28.
    G.R. Gochanour, H.C. Andersen, and M.D. Fayer, J. Chem. Phys 70, 4254 (1979)ADSCrossRefGoogle Scholar
  29. 29.
    R.F. Loring, M.C. Andersen, and M.D. Fayer, J. Chem. Phys. 76, 2015 (1982)ADSCrossRefGoogle Scholar
  30. 30.
    R.F. Loring and M.D. Fayer, Chem. Phys. 70, 139 (1982)ADSCrossRefGoogle Scholar
  31. 31.
    P. Evesque, J. Phys. (Paris), 44, 1217 (1983)CrossRefGoogle Scholar
  32. 32.
    P.G. de Gennes, C.R. Acad. Sc. Ser. B 296, 881 (1983)Google Scholar
  33. 33.
    P. Evesque, and J. Duran, J. Chem. Phys. 80, 3016 (1984)ADSCrossRefGoogle Scholar
  34. 34.
    J. Kats, and A.H. Thompson, Phys. Rev. Lett. 54, 1325 (1985)ADSCrossRefGoogle Scholar
  35. 35.
    K. Kadukora, Ph.D. Dissertation, University of California, Los Angeles (1983)Google Scholar
  36. 36.
    J.R. Beamish, A. Hikata, and C. Elbaura, Phys. Rev. B 27, 5848 (1983)ADSCrossRefGoogle Scholar
  37. 37.
    J.R. Beamish, U. Even, K. Rademann, J. Jortner, N. Manor, and R. Reisfeld, Phys. Rev. Lett. 52, 2164 (1984)ADSCrossRefGoogle Scholar
  38. J.R. Beamish, P. Levitz and J.M. Drake, Phys. Rev. Lett. 58, 686 (1987)ADSCrossRefGoogle Scholar
  39. 38.
    W.D. Dozier, J.M. Drake, and J. Klafter, Phys. Rev. Lett. 56, 197 (1986)ADSCrossRefGoogle Scholar
  40. 39.
    J. Klafter, and A. Blumen, J. Chem. Phys. 80, 875 (1984)ADSCrossRefGoogle Scholar
  41. 40.
    C.L. Yang, P. Evesque, and M.A. El-Sayed, J. Phys. Chem. 89, 3442 (1985)CrossRefGoogle Scholar
  42. 41.
    C.L. Yang, P. Evesque, J. Duran, and A. Bourdon, J. Phys. C 18, 2643 (1985)ADSCrossRefGoogle Scholar
  43. C.L. Yang, P. Evesque, J. Duran, and A. Bourdon, J. Phys. (Paris) C7, 45 (1985)Google Scholar
  44. 42.
    A. Rosencwaig, “Photoacoustic and photothermal spectroscopy”, John Wiley and Son, New York (1980)Google Scholar
  45. 43.
    A.C. Boccara, D. Fournier, and J. Badoz, Appl. Phys. Lett. 36, 130 (1979)ADSCrossRefGoogle Scholar
  46. 44.
    W.B. Jackson, N.M. Amer, A.C. Boccara, and D. Fournier, 20, 1333 (1981)Google Scholar
  47. 45.
    F. Charbonnier, and D. Fournier, Rev. Sci. Instrum. 57, 1126 (1986)ADSCrossRefGoogle Scholar
  48. 46.
    M.L. Theye, A. Georghia, K. Driss-Khodja, and A.C. Boccara, “11th Conf. on Amorphous and Liquid Semiconductors”, Rome (1985)Google Scholar
  49. 47.
    W. Jackson, N. Amer, D. Fournier and A.C. Boccara, “Technical Digest 2nd Int. topical mentions on photoacoustic spectroscopy” (1981)Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • P. Evesque
    • 1
  • C. Boccara
    • 2
  1. 1.Laboratoire d’Optique de la Matière CondenséeUniversité P. et M. CurieParis Cedex 05France
  2. 2.Laboratoire d’Optique PhysiqueESPCIParis Cedex 05France

Personalised recommendations