Special Topic

Fundamental Interactions of Elementary Particles: Discoveries and Perspectives
  • G. Costa
Part of the Ettore Majorana International Science Series book series (EMISS, volume 46)


Recent progress in the unification of the fundamental interactions among elementary constituents of matter is reviewed. A great achievement has been the unification of electromagnetic and weak interactions, which implies the existence of heavy intermediate bosons (W± and Z°), discovered in 1983 at the proton-antiproton collider at CERN, Geneva. The peculiar properties of strong interactions can be understood in a theoretical framework, called quantum chromodynamics, in which the relevant quanta are the quarks and the gluons. Some progress has been made in the next step of unifying also strong and electroweak interactions in a theory of Grand Unification. A characteristic feature is the prediction of the proton decay, for which extensive experimental searches have put already stringent limits. Finally, recent ideas about the important role that gravitation might have in elementary particles are briefly discussed.


Gauge Symmetry Vector Boson Proton Decay Grand Unify Theory Electroweak Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.L. Glashow, Nucl. Phys. 22, 579 (1961).CrossRefGoogle Scholar
  2. S. Weinberg, Phys. Rev. Lett. 19, 1269 (1967).ADSCrossRefGoogle Scholar
  3. A. Salam, Proceed. of the VIII Nobel Symposium, ed. N. Svartho1m ( Almquist and Wiksells, Stockholm, 1968 ), p. 367.Google Scholar
  4. 2.
    F.J. Hasert et al., Phys. Lett. B46, 138 (1973).CrossRefGoogle Scholar
  5. 3.
    P.W. Higgs, Phys. Lett. 12, 132 (1964)ADSGoogle Scholar
  6. P.W. Higgs, Phys. Lett. Phys. Rev. 145, 1156 (1966).MathSciNetADSCrossRefGoogle Scholar
  7. 4.
    G. Arnison et al., Phys. Lett. B122, 103 (1983)CrossRefGoogle Scholar
  8. G. Arnison et al., Phys. Lett. B126, 398 (1983);CrossRefGoogle Scholar
  9. M. Banner et al., Phys. Lett. B122, 476 (1983);CrossRefGoogle Scholar
  10. P. Bagnaia et al., Phys. Lett. B129, 130 (1983).CrossRefGoogle Scholar
  11. 5.
    H. Yukawa, Proc. Phys. Math. Soc. of Japan 17, 48 (1935).Google Scholar
  12. 6.
    C.M. Lattes, G.P.S. Occhialini and C.F. Powell, Nature 160, 453, 486 (1947).ADSCrossRefGoogle Scholar
  13. 7.
    Particle Data Group, Phys. Letters 170B, 1 (1986).CrossRefGoogle Scholar
  14. 8.
    M. Gell-Mann and Y. Ne’eman, The Eightfold Way, W.A. Benjamin, New York (1964), and references therein.Google Scholar
  15. 9.
    M. Gell-Mann, Proc. Intern. Conf. on High Energy Physics, CERN, Geneva (1962), p. 805.Google Scholar
  16. 10.
    V.E. Barnes et al., Phys. Rev. Letters 12, 204 (1964);ADSCrossRefGoogle Scholar
  17. G.S. Abrams et al., Phys. Rev. Letters 13, 670 (1964).ADSCrossRefGoogle Scholar
  18. 11.
    M. Gell-Mann, Physics Letters 8, 214 (1964);ADSCrossRefGoogle Scholar
  19. G. Zweig, CERN report (unpublished).Google Scholar
  20. 12.
    W. Greenberg, Phys. Rev. Letters 13, 122 (1964).CrossRefGoogle Scholar
  21. 13.
    J. Steinberg, Proceedings of the XII SLAC Summer Institute on Particle Physics (July 1984).Google Scholar
  22. 14.
    H. Fritzsch and M. Gell-Mann, Proceedings of the XVI Intern. Conf. on High Energy Physics, Chicago (1972).Google Scholar
  23. 15.
    D.J. Gross and F. Wilczek, Phys. Rev. Letters 30, 1343 (1973);ADSCrossRefGoogle Scholar
  24. H.D. Politzer, Phys. Rev. Letters 30, 1346 (1973).ADSCrossRefGoogle Scholar
  25. 16.
    S.L. Glashow, J. Iliopoulos and L. Maiani, Phys. Rev. D2, 1285 (1970).ADSGoogle Scholar
  26. 17.
    J.J. Aubert et al., Phys. Rev. Letters 33, 1404 (1974);ADSCrossRefGoogle Scholar
  27. J.E. Augustin et al., Phys. Rev. Letters 33, 1406 (1974);ADSCrossRefGoogle Scholar
  28. C. Bacci et al., Phys. Rev. Letters 33, 1408 (1974).ADSCrossRefGoogle Scholar
  29. 18.
    S.W. Herb et al., Phys. Rev. Letters 39, 252 (1977).MathSciNetADSCrossRefGoogle Scholar
  30. 19.
    M.L. Perl et al., Phys. Letters 63B, 466 (1976).ADSCrossRefGoogle Scholar
  31. 20.
    H. Georgi and S.L. Glashow, Phys. Rev. Letters 32, 438 (1974).ADSCrossRefGoogle Scholar
  32. 21.
    H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Letters 33, 451 (1974).ADSCrossRefGoogle Scholar
  33. 22.
    A.J. Buras, J. Ellis, M.K. Gaillard and D.V. Nanopoulos, Nuclear Phys. B135, 66 (1978).ADSCrossRefGoogle Scholar
  34. 23.
    R.M. Bionta et al„ Phys. Rev. Letters 51 (1983) 27ADSCrossRefGoogle Scholar
  35. H.S. Park et al., Phys. Rev. Letters 54 (1985) 54.Google Scholar
  36. 24.
    G. Costa and F. Zwirner, Rivista del Nuovo Cimento 9, no. 3 (1986)CrossRefGoogle Scholar
  37. 25.
    J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton, N.J. (1982).Google Scholar
  38. 26.
    M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory, Cambridge University Press, Cambridge (1987).MATHGoogle Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • G. Costa
    • 1
    • 2
  1. 1.Dipartimento di Fisica dell’UniversitàPadovaItaly
  2. 2.Istituto Nazionale di Fisica NucleareSezione di PadovaItaly

Personalised recommendations