Skip to main content

Mass Transfer of Liquids Across Biological Barriers

  • Conference paper
The Biophysics of Organ Cryopreservation

Part of the book series: NATO ASI Series ((NSSA,volume 147))

Abstract

I believe that I was asked to address my colleagues in Cryobiology because of my interest in water and how it moves across biological barriers. Apparently freezing produces differential changes in the osmolarity of cell and medium and having water around which can crystallize is not a happy event. Therefore a major portion of this talk will be devoted to the transfer of water between compartments as a consequence of osmotic gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Kedem and A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. et Biophys. Acta 27:229–246 (1958).

    CAS  Google Scholar 

  2. E. Ponder, “Hemolysis and Related Phenomena”, Grune & Stratton, Inc., New York, 83–101 (1948).

    Google Scholar 

  3. B. Lucke’, H. M. Hartline and M. McCutcheon, Further studies on the kinetics of osmosis in living cells, J. Gen. Physiol. 14:405–419 (1931).

    Article  Google Scholar 

  4. D. A. T. Dick, Osmotic properties of living cells, Int. Rev. Cytol. 8:387–448 (1959).

    Article  PubMed  CAS  Google Scholar 

  5. E. K. Hoffman, Role of separate K+ and Cl- channels and of Na+/Cl- cotransport in volume regulation in Ehrlich cells, Fed. Proc. 44:2513–2519 (1985).

    Google Scholar 

  6. F. W. Cope, Supramolecular biology: a solid state approach to ion and electron transport, Ann. N.Y. Acad. Sci. 204:416–433.

    Google Scholar 

  7. W. Drost-Hansen, in: “Chemistry of the Cell Interface”, Part B, edited by H.D. Brown, Academic Press, Inc., N.Y. (1971).

    Google Scholar 

  8. R. Damadian, Biological ion exchanger resins, Ann. N.Y. Acad. Sci. 204:211–244 (1973).

    Article  PubMed  CAS  Google Scholar 

  9. H. S. Frank and M. W. Evans, Free volume and entrophy in condensed systems. III. Entrophy in binary liquid mixtures; partial molal entrophy in dilute solutions; structure and thermodynamics in aqueous electrolytes, J. Chem. Phys. 13:507–532 (1945).

    Article  CAS  Google Scholar 

  10. F. Franks and S. Mathias, “Biophysics of Water”, John Wiley & Sons, Ltd., New York, (1982).

    Google Scholar 

  11. W. Kauzmann, Some factors in the interpretation of protein denaturation, Princeton, N.J., Adv. Protein Chem. 14:1 (1959).

    Article  CAS  Google Scholar 

  12. W. Negendank and C. Shaller, Potassium-sodium distribution in human lymphocytes. Description by the association-induction hypothesis, J. Cell. Physiol. 98:95–105 (1979).

    Article  PubMed  CAS  Google Scholar 

  13. A. DuPre and H.G. Hempling, Electrolyte and non-electrolyte distribution in the Ehrlich ascites tumor cells during the cell cycle, J. Cell. Physiol. 105:389–399 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. A. D. Cicoria and H. G. Hempling, Osmotic properties of a proliferating and differentiating line of cells from the bone marrow of the rat, J. Cell. Physiol. 195:105–127 (1980).

    Article  Google Scholar 

  15. J. C. Freedman and J. F. Hoffman, Ionic and osmotic equilibria of human red blood cells treated with nystatin, J. Gen. Physiol. 74:157–185 (1979).

    Article  PubMed  CAS  Google Scholar 

  16. A. Connolly and H. G. Hempling, The effects of dimethyl sulfoxide on the osmotic properties of a rat megakaryocytopoietic cell line, Cryobiology 22:351–358 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. B. Rubinsky and E. Cravalho, Transient mass transfer process during the perfusion of a biological organ with a cryophylactic agent solution, Cryobiology 19:70–82 (1982).

    Article  PubMed  CAS  Google Scholar 

  18. H. G. Hempling and S. White, Permeability of cultured megakaryocytopoietic cells of the rat to dimethyl sulfoxide, Cryobiology 21:133–143 (1984).

    Article  PubMed  CAS  Google Scholar 

  19. P. Mazur, Kinetics of water loss from cells at sub-zero temperatures and the likelihood of intracellular freezing, J. Gen. Physiol. 47:405–419 (1931).

    Google Scholar 

  20. D.C. Chang, H.E. Rorschach, B.L. Nichols and C.F. Hazlewood, Implications of diffusion coefficient measurements for the structure of cellular water, Annals New York Acad. Sci 204:434 (1973).

    CAS  Google Scholar 

  21. G.N. Lin, M.M. Ochsenfeld and G. Karreman, Is the cell membrane a universal rate-limiting barrier to the movement of water beween the living cell and its surrounding medium, J. Gen. Physiol. 50:1807 (1967).

    Article  Google Scholar 

  22. L. Edelmann, Potassium binding sites in muscle: electron microscopic visualization of K, Rb, and Cs in freeze-dried preparations and autoradiography at liquid nitrogen temperature using 86Rb and 134Cs, Histochemistry 67:233 (1980).

    Article  PubMed  CAS  Google Scholar 

  23. L. Edelmann, Subcellular distribution of potassium in striated muscles, Scanning Electron Microscopy 11:875 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

Hempling, H.G. (1987). Mass Transfer of Liquids Across Biological Barriers. In: Pegg, D.E., Karow, A.M. (eds) The Biophysics of Organ Cryopreservation. NATO ASI Series, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5469-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5469-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5471-0

  • Online ISBN: 978-1-4684-5469-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics