Examination of Organ Physiology by Positron Emission Tomography

  • Albert Gjedde
Conference paper
Part of the NATO ASI Series book series (NSSA, volume 147)


Several organs have been studied by positron emission tomography (PET), including brain, heart, liver, and lungs, but other organs may also qualify for this particular method of physiology examination. In conventional kinetic models, an organ consists of a number of compartments corresponding to the different states of a tracer. The compartments reflect the fate of the tracer and represent a specific theory of the biochemistry of an organ. Compartments are volumes, real or kinetic, in which the concentration of the tracer or its derivatives everywhere is the same. All concentration gradients are placed at the interfaces between compartments. Normally, the interfaces are cell membranes or chemical reactions involving transporter, receptor, or enzyme proteins.


Positron Emission Tomography Deoxyglucose Uptake Glucose Phosphorylation Local Cerebral Glucose Utilization Additional Compartment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Crone, The permeability of capillaries in various organs as determined by use of the ‘indicator diffusion’ method. Acta Physiol Scand 58: 292 (1963).PubMedCrossRefGoogle Scholar
  2. 2.
    S.S. Kety, The theory and application of the exchange of inert gas at the lungs and tissues. Pharmacol Rev 3: 1 (1951).PubMedGoogle Scholar
  3. 3.
    S.S. Kety, Measurements of local blood flow by the exchange of an inert diffusible substance. In: Methods in Medical Research, Volume 8, Yearbook Publishers, Chicago, pp. 223, 1960.Google Scholar
  4. 4.
    S.S. Kety, C.F. Schmidt, The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Physiol 143: 53 (1945).Google Scholar
  5. 5.
    L.A. Sapirstein, Fraction of the cardiac output of rats with isotopic potassium. Circ Res 4: 689 (1956).PubMedGoogle Scholar
  6. 6.
    A.P. Selwyn, R.M. Allan, A. l’Abbate, P. Horlock, P. Camici, H.A. O’Brien, P.A. Grant, Relation between regional myocardial uptake of rubidium-82 and perfusion: Absolute reduction of cation uptake in ischemia. Am J Cardiol 50: 112 (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    R.A. Wilson, M. Shea, C. DeLandsheere, J. Deanfield, A.A. Lammertsma, T. Jones, A.P. Selwyn, Rubidium-82 myocardial uptake and extraction after transient ischemia: PET characteristics. J Compt Assist Tomogr 11: 60 (1987).CrossRefGoogle Scholar
  8. 8.
    J.A. Schaefer, A. Gjedde, F. Plum, Regional cerebral blood flow using n-(14C)butanol. Neurology 26: 394 (1976).Google Scholar
  9. 9.
    A. Gjedde, J.J. Caronna, B. Hindfelt, F. Plum Whole-organ blood flow and oxygen metabolism in the rat during nitrous oxide anesthesia. Am J Physiol 229: 113 (1975).PubMedGoogle Scholar
  10. 10.
    P. Scheinberg, E.A. Stead Jr., The cerebral blood flow in male subjects as measured by the nitrous oxide technique. Normal values for blood flow, oxygen utilization, glucose utilization, and peripheral resistance, with observations on the effect of tilting and anxiety. J Clin Invest 28: 1163 (1949).PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Sasaki, H.N. Jr. Wagner, Measurement of the distribution of cardiac output in unanesthetized rats. J Appl Physiol 30: 879 (1971).PubMedGoogle Scholar
  12. 12.
    A. Gjedde, High- and low-affinity transport of D-glucose from blood to organ. J Neurochem 36: 1463 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    C. Patlak, R.G. Blasberg, J.D. Fenstermacher, Graphical evaluation of blood-to-organ transfer constants from multiple time uptake data. J Cereb Blood Flow Metab 3: 1 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    M.E. Raichle, W.R.W. Martin, Herscovitch P, Mintun MA, Markham J, Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 24: 790 (1983).PubMedGoogle Scholar
  15. 15.
    A. Gjedde, The selective barrier between blood and brain. Trends Biochem Sci 11: 525 (1986).CrossRefGoogle Scholar
  16. 16.
    M.A. Mintun, M.E. Raichle, W.R.W. Martin, P. Herscovitch, Organ oxygen utilization measured with O–15 radiotracers and positron emission tomography. J Nucl Med 25: 177 (1984).PubMedGoogle Scholar
  17. 17.
    E. Meyer, J.L. Tyler, C.J. Thompson, C. Redies, M. Diksic, A.M. Hakim, Estimation of cerebral oxygen utilization rate by single bolus oxygen-15 O2 inhalation and dynamic positron emission tomography. J Cerebral Blood Flow Metab (in press).Google Scholar
  18. 18.
    L.R. Drewes, G. Mies, K.A. Hossmann, G. Stocklin, Blood--brain transport and regional distribution of bromo-benzodiazepine. Brain Res 401: 55 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    A. Gjedde, Calculation of glucose phosphorylation from organ uptake of glucose analogs in vivo: A re-examination. Organ Res Rev 4: 237 (1982).Google Scholar
  20. 20.
    L. Sokoloff, M. Reivich, C. Kennedy, M.H. des Rosiers, C.S. Patlak, K.D. Pettigrew, O. Sakurada M Shinohara, The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897 (1977).PubMedCrossRefGoogle Scholar
  21. 21.
    M.E. Phelps, S.C. Huang, E.J. Hoffman, C. Selin, L. Sokoloff, D.E. Kuhl, Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol 6: 371 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Reivich, D. Kuhl, A. Wolf, J. Greenberg, M. Phelps, T. Ido, V. Casella, J. Fowler, E. Hoffman, A. Alavi, P. Som, L. Sokoloff, The (18F)fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ Res 44: 127 (1979).PubMedGoogle Scholar
  23. 23.
    A. Gjedde, K. Wienhard, W.D. Heiss, K. Kloster, N.H. Diemer, K. Herholz, G. Pawlik, Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. J Cerebr Blood Flow Metab 5: 163 (1985).CrossRefGoogle Scholar
  24. 24.
    A.C. Evans, M. Diksic, Y.L. Yamamoto, A. Kato, A. Dagher, C. Redies, A. Hakim, The effect of vascular activity in the determination of rate constants for the uptake of F-18 labelled 2-fluoro-2-deoxy-D-glucose: Error analysis and normal values in older subjects. J Cerebr Blood Flow Metab, in press, 1986.Google Scholar
  25. 25.
    M.E. Phelps, J.R. Barrio, S.C. Huang, R.E. Keen, H. Chugani, J.C. Mazziotta, Measurement of cerebral protein synthesis in man with positron computerized tomography: Model, assumptions, and preliminary results. In: The Metabolism of the Human Brain Studied with Positron Emission Tomography, eds. Greitz T, Ingvar DH, Widen L, Raven Press, New York, pp. 215 (1985).Google Scholar
  26. 26.
    W. Bodsch, A. Gjedde, Exchange diffusion of large neutral amino acids from blood to organ. XIII International Symposium on Cerebral Blood Flow and Metabolism, Montreal, Quebec, June 20–25 (1987).Google Scholar
  27. 27.
    S.-C. Huang, J. R. Barrio, M.E. Phelps, Neuroreceptor assay with positron emission tomographhy: Equilibrium versus dynamic approaches. J Cerebr Blood Flow Metab 6: 515 (1986).CrossRefGoogle Scholar
  28. 28.
    D.F. Wong, A. Gjedde, H.N. Jr. Wagner, Quantification of neuroreceptors in the living human organ. I. Irreversible binding of ligands. J Cereb Blood Flow Metab 6: 137 (1986a).PubMedCrossRefGoogle Scholar
  29. 29.
    A. Gjedde, D.F. Wong, H.N. Jr. Wagner, Transient analysis of irreversible and reversible tracer binding in human brain in vivo. In: PET and NMR: New Perspectives in Neuroimaging and in Clinical Neurochemistry (eds Battistin L, Gerstenbrand F), Alan R. Liss, New York, pp. 223–235 (1986).Google Scholar
  30. 30.
    D.E. Schafer, Measurement of receptor-ligand binding: Theory and practice. In: Tracer Kinetics and Physiologic Modeling (eds. Lambrecht RM, Rescigno A). Lecture Notes in Biomathematics, Volume 48 (ed. Levin S), Springer Verlag, New York 1983, pp. 445 (1983).Google Scholar
  31. 31.
    L. Farde, H. Hall, E. Ehrin, G. Sedvall, Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231: 258 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Syrota, D. Comar, G. Paillotin, J.M. Davy, M.C. Aumont, O. Stulzaft, B. Maziere, Muscarinic cholinergic receptor in human heart evidenced under physiological conditions by positron emission tomography. Proc Natl Acad Sci USA 82: 584 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    A. Syrota, M. Castaing, D. Rougemont, M. Berridge, J.C. Baron, M.G. Bousser, J.J Pocidalo, Tissue acid-base balance and oxygen metabolism in human cerebral infarction studied with positron emission tomography. Ann Neurol 14: 419 (1983).PubMedCrossRefGoogle Scholar
  34. 34.
    K.J. Kearfott, L. Junck, D.A. Rottenberg, C-11 dimethyloxazolidinedione (DMO): Biodistribution, radiation absorbed dose, and potential for PET measurement of regional brain pH: Concise communication. J Nucl Med 24: 805 (1983).PubMedGoogle Scholar
  35. 35.
    D.F. Wong, H.N. Wagner, L.E. Tune, R.F. Dannais, G.D. Pearlson, J.M. Links, C.A. Tamminga, E.P. Broussolle, H.T. Ravert, A.A. Wilson, J.K. Thomas Toung, J. Malat, J.A. Williams, L.A. O’Tuama, S.H. Snyder, M.J. Kuhar, A. Gjedde, Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 234: 1558 (1986b).PubMedCrossRefGoogle Scholar
  36. 36.
    P. Camici, L.I. Araujo, T. Spinks, A.A. Lammertsma, J.C. Kaski, M.J. Shea, A.P. Selwyn, T. Jones, A. Maseri, Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina. Circulation 74(1): 81 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Albert Gjedde
    • 1
  1. 1.Brain Imaging Centre, Department of NeurologyMontreal Neurological InstituteMontrealCanada

Personalised recommendations