Skip to main content

Electromagnetic Heating Techniques for Organ Rewarming

  • Conference paper
The Biophysics of Organ Cryopreservation

Part of the book series: NATO ASI Series ((NSSA,volume 147))

Abstract

Although there is growing awareness of the need for cryo-preservation of solid organs for transplantation, whole-organ survival rate after freezing and thawing has changed little over the last quarter of a century (1). Nevertheless, a great deal has been learned concerning mechanisms of failure and avenues of inquiry which may lead to successful recovery of frozen organs for transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.A. Jacobsen and D. E. Pegg, “Cryopreservation of Organs: A Review,” Cryobiology 21:377 (1984).

    Article  PubMed  CAS  Google Scholar 

  2. A. M. Karow, Jr., G. J. M. Abouna, and A. L. Humphries, “Organ Preservation for Transplantation,” Little, Brown and Co., Boston (1984).

    Google Scholar 

  3. F. M. Guttman, J. Lizin, P. Robitaille, H. Blanchard, and C. Turgeon-Knaack, Survival of Canine Kidneys after Treatment with Dimethyl-sulfoxide, Freezing at −80°C, and Thawing by Microwave Illumination, Cryobiology 14:559 (1977).

    Article  PubMed  CAS  Google Scholar 

  4. D. E. Pegg, I. A. Jacobsen, M. P. Diaper, and J. Foreman, The Effect of Cooling and Warming Rate on Cortical Cell Function of Glycerolized Rabbit Kidneys, Cryobiology 21:529 (1984).

    Article  PubMed  CAS  Google Scholar 

  5. I. A. Jacobsen, D. E. Pegg, H. Starklint, J. Chemnitz, C. Hunt, P. Barfort, and M. P. Diaper, Effect of Cooling and Warming Rate on Glycerolized Rabbit Kidneys, Cryobiology 21:637 (1984).

    Article  PubMed  CAS  Google Scholar 

  6. P. Mazur, Fundamental Cryobiology and the Preservation of Organs by Freezing, in: “Organ Preservation for Transplantation,” A. M. Karow, Jr., and D. E. Pegg, eds., Little, Brown and Co., Boston (1981).

    Google Scholar 

  7. E. C. Burdette and A. M. Karow, Jr., Kidney Model for Study of Electromagnetic Thawing, Cryobiology 15:142 (1978).

    Article  PubMed  CAS  Google Scholar 

  8. A. M. Karow, Jr., Problems of organ cryopreservation, in: “Organ Preservation for Transplantation,” A. M. Karow, Jr., and D. E. Pegg, eds., Little, Brown and Co., Boston (1981).

    Google Scholar 

  9. E. C. Burdette, Engineering Considerations in Hypothermic and Cryogenic Preservation, in: “Organ Preservation for Transplantation,” A. M. Karow, and D. E. Pegg, eds., Marcel Dekker, New York (1981).

    Google Scholar 

  10. R. Hamilton, F. Ketterer, H. Holt, and H. Kehr, Rapid-thawing of Frozen Canine Kidneys by Microwaves, Cryobiology 4:265 (1968).

    Google Scholar 

  11. H. A. Ecker, E. C. Burdette, and F. I. Cain, Simultaneous Microwave and High Frequency Thawing of Cryogenically Preserved Canine Kidneys, in: “Record of the IEEE International Symposium on Electromagnetic Compatibility,” IEEE, Washington, D.C., (1976).

    Google Scholar 

  12. R. V. Rajotte, J. B. Dossetor, W. A. Voss and C. A. Stiller, Preservation Studies on Canine Kidneys Recovered from Deep Frozen State by Microwave Thawing, IEEE Proc. 62:76 (1974).

    Article  Google Scholar 

  13. W. A. G. Voss, R. V. Rajotte, and J. B. Dossetor, Applications of Microwave Thawing to the Recovery of Deep Frozen Cells and Organs: A Review, J. Microwave Power 9:181 (1974).

    Google Scholar 

  14. S. Kubota, and R. C. Lilehei, Some Problems Associated with Kidneys Frozen to −50 °C or Below, Low Temp. Med. 2:95 (1976).

    Google Scholar 

  15. E. C. Burdette, A. M. Karow, Jr., and A. H. Jeske, Design, Development, and Performance of an Electromagnetic Illumination System for Thawing Cryopreserved Kidneys of Rabbits and Dogs, Cryobiology 15:152 (1978).

    Article  PubMed  CAS  Google Scholar 

  16. D. E. Pegg, C. J. Green, and C. A. Walter, Attempted canine renal cryopreservation using dimethyl sulphoxide helium perfusion and microwave thawing, Cryobiology 15:618 (1978).

    Article  PubMed  CAS  Google Scholar 

  17. F. M. Guttman, R. G. Bosisio, D. Bolongo, N. Segal, and J. Borzone, Microwave Illumination for Thawing Frozen Canine Kidneys: (A) Assessment of Two Ovens by Direct Measurement and Thermography. (B) The Use of Effective Dielectric Temperature to Monitor Change During Microwave Thawing, Cryobiology 17:465 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. D. Cooper, F. Ketterer, and H. Holst, Organ Temperature Measurement in a Microwave Oven by Resonance Frequency Shift, Cryobiology 18:378 (1981).

    Article  PubMed  CAS  Google Scholar 

  19. E. C. Burdette, S. Wiggins, R. Brown, and A. M. Karow, Jr., Microwave Thawing of Frozen Kidneys: A Theoretically Based Experimentally-effective Design, Cryobiology 17:393 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. A. M. Karow, Electronic Techniques for Controlling Thawing of Major Organs, Cryobiology 21:403 (1984).

    Article  PubMed  CAS  Google Scholar 

  21. J. D. Macklis and F. D. Ketterer, Microwave Properties of Cryoprotectants, Cryobiology 15:627 (1978).

    Article  PubMed  CAS  Google Scholar 

  22. J. D. Macklis, F. D. Ketterer, and E. G. Cravalho, Temperature Dependence of the Microwave Properties of Aqueous Solution of Ethylene Glycol between + 15°C and — 70 °C, Cryobiology 16:272 (1979).

    Article  PubMed  CAS  Google Scholar 

  23. E. C. To, R. E. Mudgett, D. I. C. Wang, S. A. Goldblith, and R. V. Decareau, Dielectric Properites of Food Materials, J. Microwave Power 9(4):303 (1979).

    Google Scholar 

  24. R. E. Mudgett, D. R. Mudgett, S. A. Goldblith, D. I. C. Wang, and W. B. Westphal, Dielectric Properties of Frozen Meats, J. Microwave Power 14(3):209 (1979).

    Google Scholar 

  25. J. C. Lin, Engineering and Biophysical Aspects of Microwave and Radio-Frequency Radiation, in: “Hyperthermia,” D. J. Watmough, and W. M. Ross, eds., Blackie, Glasgow, (1986).

    Google Scholar 

  26. J. C. Lin, Computer Methods for Field Intensity Predictions, in: “CRC Handbook of Biological Effects of Electromagnetic Fields,” C. Polk, and E. Postow, eds., CRC Press, Boca Raton, FL (1986).

    Google Scholar 

  27. A. W. Guy, J. F. Lehmann, and J. B. Stonebridge, Therapeutic Application of Electromagnetic Power,” Proc. IEEE, 62:55 (1974).

    Article  Google Scholar 

  28. H. S. Ho, Contrast Distribution in Phantom Heads due to Aperture and Plane Wave Sources, Annals N.Y. Acad. Science, 247:454 (1975).

    Article  CAS  Google Scholar 

  29. J. C. Lin, ed., Phased Arrays for Hyperthermia Treatment of Cancer, IEEE Trans. MTT 34 (1986).

    Google Scholar 

  30. J. C. Lin, A. W. Guy, C. C. Johnson, Power Deposition in a Spherical Model of Man Exposed to 1–20-MHz Electromagnetic Fields, IEEE Trans. MTT, 12:791 (1973).

    Article  Google Scholar 

  31. P. S. Ruggera, and G. Kantor, Development of a Family of RF Helical Coil Applications which Produce Transversely Uniform Axially Distributed Heating in Cylindrical Fat-Muscle Phantoms, IEEE Trans. BME, 31:98 (1948).

    Article  Google Scholar 

  32. R. G. Olsen, and T. D. David, Hypothermia and Electromagnetic Rewarming in the Rhesus Monkey, Aviat. Space Environ. Med., 55:1111 (1984).

    PubMed  CAS  Google Scholar 

  33. G. Sato, C. Shibata, S. Sekimukai, H. Wakabay, K. Mitsuka, and K. Giga, Phase-Controlled Circular Array Heating Equipment for Deep-Seated Tumors: Preliminary Experiments, IEEE Trans. MTT, 34:520 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this paper

Cite this paper

Lin, J.C. (1987). Electromagnetic Heating Techniques for Organ Rewarming. In: Pegg, D.E., Karow, A.M. (eds) The Biophysics of Organ Cryopreservation. NATO ASI Series, vol 147. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5469-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5469-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5471-0

  • Online ISBN: 978-1-4684-5469-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics