Electromagnetic Heating Techniques for Organ Rewarming

  • James C. Lin
Part of the NATO ASI Series book series (NSSA, volume 147)


Although there is growing awareness of the need for cryo-preservation of solid organs for transplantation, whole-organ survival rate after freezing and thawing has changed little over the last quarter of a century (1). Nevertheless, a great deal has been learned concerning mechanisms of failure and avenues of inquiry which may lead to successful recovery of frozen organs for transplantation.


Electromagnetic Energy Uniform Heating Power Deposition Uniform Electric Field Helical Coil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I.A. Jacobsen and D. E. Pegg, “Cryopreservation of Organs: A Review,” Cryobiology 21:377 (1984).PubMedCrossRefGoogle Scholar
  2. 2.
    A. M. Karow, Jr., G. J. M. Abouna, and A. L. Humphries, “Organ Preservation for Transplantation,” Little, Brown and Co., Boston (1984).Google Scholar
  3. 3.
    F. M. Guttman, J. Lizin, P. Robitaille, H. Blanchard, and C. Turgeon-Knaack, Survival of Canine Kidneys after Treatment with Dimethyl-sulfoxide, Freezing at −80°C, and Thawing by Microwave Illumination, Cryobiology 14:559 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    D. E. Pegg, I. A. Jacobsen, M. P. Diaper, and J. Foreman, The Effect of Cooling and Warming Rate on Cortical Cell Function of Glycerolized Rabbit Kidneys, Cryobiology 21:529 (1984).PubMedCrossRefGoogle Scholar
  5. 5.
    I. A. Jacobsen, D. E. Pegg, H. Starklint, J. Chemnitz, C. Hunt, P. Barfort, and M. P. Diaper, Effect of Cooling and Warming Rate on Glycerolized Rabbit Kidneys, Cryobiology 21:637 (1984).PubMedCrossRefGoogle Scholar
  6. 6.
    P. Mazur, Fundamental Cryobiology and the Preservation of Organs by Freezing, in: “Organ Preservation for Transplantation,” A. M. Karow, Jr., and D. E. Pegg, eds., Little, Brown and Co., Boston (1981).Google Scholar
  7. 7.
    E. C. Burdette and A. M. Karow, Jr., Kidney Model for Study of Electromagnetic Thawing, Cryobiology 15:142 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    A. M. Karow, Jr., Problems of organ cryopreservation, in: “Organ Preservation for Transplantation,” A. M. Karow, Jr., and D. E. Pegg, eds., Little, Brown and Co., Boston (1981).Google Scholar
  9. 9.
    E. C. Burdette, Engineering Considerations in Hypothermic and Cryogenic Preservation, in: “Organ Preservation for Transplantation,” A. M. Karow, and D. E. Pegg, eds., Marcel Dekker, New York (1981).Google Scholar
  10. 10.
    R. Hamilton, F. Ketterer, H. Holt, and H. Kehr, Rapid-thawing of Frozen Canine Kidneys by Microwaves, Cryobiology 4:265 (1968).Google Scholar
  11. 11.
    H. A. Ecker, E. C. Burdette, and F. I. Cain, Simultaneous Microwave and High Frequency Thawing of Cryogenically Preserved Canine Kidneys, in: “Record of the IEEE International Symposium on Electromagnetic Compatibility,” IEEE, Washington, D.C., (1976).Google Scholar
  12. 12.
    R. V. Rajotte, J. B. Dossetor, W. A. Voss and C. A. Stiller, Preservation Studies on Canine Kidneys Recovered from Deep Frozen State by Microwave Thawing, IEEE Proc. 62:76 (1974).CrossRefGoogle Scholar
  13. 13.
    W. A. G. Voss, R. V. Rajotte, and J. B. Dossetor, Applications of Microwave Thawing to the Recovery of Deep Frozen Cells and Organs: A Review, J. Microwave Power 9:181 (1974).Google Scholar
  14. 14.
    S. Kubota, and R. C. Lilehei, Some Problems Associated with Kidneys Frozen to −50 °C or Below, Low Temp. Med. 2:95 (1976).Google Scholar
  15. 15.
    E. C. Burdette, A. M. Karow, Jr., and A. H. Jeske, Design, Development, and Performance of an Electromagnetic Illumination System for Thawing Cryopreserved Kidneys of Rabbits and Dogs, Cryobiology 15:152 (1978).PubMedCrossRefGoogle Scholar
  16. 16.
    D. E. Pegg, C. J. Green, and C. A. Walter, Attempted canine renal cryopreservation using dimethyl sulphoxide helium perfusion and microwave thawing, Cryobiology 15:618 (1978).PubMedCrossRefGoogle Scholar
  17. 17.
    F. M. Guttman, R. G. Bosisio, D. Bolongo, N. Segal, and J. Borzone, Microwave Illumination for Thawing Frozen Canine Kidneys: (A) Assessment of Two Ovens by Direct Measurement and Thermography. (B) The Use of Effective Dielectric Temperature to Monitor Change During Microwave Thawing, Cryobiology 17:465 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    D. Cooper, F. Ketterer, and H. Holst, Organ Temperature Measurement in a Microwave Oven by Resonance Frequency Shift, Cryobiology 18:378 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    E. C. Burdette, S. Wiggins, R. Brown, and A. M. Karow, Jr., Microwave Thawing of Frozen Kidneys: A Theoretically Based Experimentally-effective Design, Cryobiology 17:393 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    A. M. Karow, Electronic Techniques for Controlling Thawing of Major Organs, Cryobiology 21:403 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    J. D. Macklis and F. D. Ketterer, Microwave Properties of Cryoprotectants, Cryobiology 15:627 (1978).PubMedCrossRefGoogle Scholar
  22. 22.
    J. D. Macklis, F. D. Ketterer, and E. G. Cravalho, Temperature Dependence of the Microwave Properties of Aqueous Solution of Ethylene Glycol between + 15°C and — 70 °C, Cryobiology 16:272 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    E. C. To, R. E. Mudgett, D. I. C. Wang, S. A. Goldblith, and R. V. Decareau, Dielectric Properites of Food Materials, J. Microwave Power 9(4):303 (1979).Google Scholar
  24. 24.
    R. E. Mudgett, D. R. Mudgett, S. A. Goldblith, D. I. C. Wang, and W. B. Westphal, Dielectric Properties of Frozen Meats, J. Microwave Power 14(3):209 (1979).Google Scholar
  25. 25.
    J. C. Lin, Engineering and Biophysical Aspects of Microwave and Radio-Frequency Radiation, in: “Hyperthermia,” D. J. Watmough, and W. M. Ross, eds., Blackie, Glasgow, (1986).Google Scholar
  26. 26.
    J. C. Lin, Computer Methods for Field Intensity Predictions, in: “CRC Handbook of Biological Effects of Electromagnetic Fields,” C. Polk, and E. Postow, eds., CRC Press, Boca Raton, FL (1986).Google Scholar
  27. 27.
    A. W. Guy, J. F. Lehmann, and J. B. Stonebridge, Therapeutic Application of Electromagnetic Power,” Proc. IEEE, 62:55 (1974).CrossRefGoogle Scholar
  28. 28.
    H. S. Ho, Contrast Distribution in Phantom Heads due to Aperture and Plane Wave Sources, Annals N.Y. Acad. Science, 247:454 (1975).CrossRefGoogle Scholar
  29. 29.
    J. C. Lin, ed., Phased Arrays for Hyperthermia Treatment of Cancer, IEEE Trans. MTT 34 (1986).Google Scholar
  30. 30.
    J. C. Lin, A. W. Guy, C. C. Johnson, Power Deposition in a Spherical Model of Man Exposed to 1–20-MHz Electromagnetic Fields, IEEE Trans. MTT, 12:791 (1973).CrossRefGoogle Scholar
  31. 31.
    P. S. Ruggera, and G. Kantor, Development of a Family of RF Helical Coil Applications which Produce Transversely Uniform Axially Distributed Heating in Cylindrical Fat-Muscle Phantoms, IEEE Trans. BME, 31:98 (1948).CrossRefGoogle Scholar
  32. 32.
    R. G. Olsen, and T. D. David, Hypothermia and Electromagnetic Rewarming in the Rhesus Monkey, Aviat. Space Environ. Med., 55:1111 (1984).PubMedGoogle Scholar
  33. 33.
    G. Sato, C. Shibata, S. Sekimukai, H. Wakabay, K. Mitsuka, and K. Giga, Phase-Controlled Circular Array Heating Equipment for Deep-Seated Tumors: Preliminary Experiments, IEEE Trans. MTT, 34:520 (1986).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • James C. Lin
    • 1
  1. 1.Department of BioengineeringUniversity of IllinoisChicagoUSA

Personalised recommendations