Ice Crystal Growth in Aqueous Solutions

  • Christoph Körber
  • Günter Rau
Part of the NATO ASI Series book series (NSSA, volume 147)


Causes and mechanisms of cryo-injury are generally multifacetted and may be of thermal, mechanical, chemical and electrical nature. For understanding the effects of ice formation on biological cells it is necessary to first obtain an exact knowledge of the ice formation process itself. If the crystallization of ice cannot be totally avoided or circumvented as described in other chapters of this volume, one has to consider its growth habits and kinetics, i.e. the morphology and the propagation of the ice-liquid interface. From a cryobiological standpoint, it is particularly important to study the “secondary effects” of ice formation, i.e. the changes induced in the solution on the liquid side of the solidification front. The solid side, i.e. the structure and the properties of the ice crystals themselves, on the other hand are less relevant with respect to freezing injury: biological cells or subcellular structures are first in the liquid where they experience changes ahead of the approaching ice front. However, both solid and liquid phase interact and influence each other. The growth habit and the properties of the ice crystal depend on the conditions in the “mother solution”, and vice versa.


Solidification Front Diffusion Boundary Layer Aqueous Salt Solution Move Boundary Problem Constitutional Supercooling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Riehl, B. Bullemer, H. Englehardt, “Physics of Ice”, Plenum, New York (1969).Google Scholar
  2. 2.
    P.V. Hobbs, “Ice Physics”, Clarendon, Oxford (1974).Google Scholar
  3. 3.
    N.E. Dorsey, “Properties of Ordinary Water Substance”, Hafner, New York (1968).Google Scholar
  4. 4.
    F. Franks, “Water — A Comprehensive Tratise” (Vols. 1 through 7), Plenum, New York (1972–1982).Google Scholar
  5. 5.
    M.W. Scheiwe, C. Korber, Thermally defined cryomicroscopy and some applications on human leukocytes, J. Microsc. 126:29 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    C. Korber, S. Englich, P. Schwindke, M.W. Scheiwe, G. Rau, A. Hubel, E.G. Cravalho, Low temperature light microscopy and its application to study freezing in aqueous solutions and biological cell suspensions, J. Mirosc. 141:263 (1986).CrossRefGoogle Scholar
  7. 7.
    C. Korber, M.W. Scheiwe, Observations on the non-planar freezing of aqueous salt solutions, J. Crystal Growth 61:307 (1983).CrossRefGoogle Scholar
  8. 8.
    J.D. Harrison, W.A. Tiller, Controlled freezing in water, in: “Ice and Snow”, (W.D. Kingerey, ed.,): M.I.T. Press, Cambridge (1963).Google Scholar
  9. 9.
    R.G. Seidensticker, Partitioning of HCl in the water-ice system, J. Chem. Phys. 56:2853 (1972).CrossRefGoogle Scholar
  10. 10.
    Landolt-Bornstein, “Zahlenwerte und Funktionen”, Springer, Berlin (1960).Google Scholar
  11. 11.
    A.P. MacKenzie, Non-equilibrium freezing behaviour of aqueous systems, Phil. Trans. Roy. Soc. London B 278:167 (1977).Google Scholar
  12. 12.
    F. Franks, The properties of aqueous solutions at subzero temperatures, in: “Water — A Comprehensive Treatise”, Vol. 7, (F. Franks ed.): Plenum, New York (1982).Google Scholar
  13. 13.
    J. Stefan, Uber einige Probleme der Theorie der Warmeleitung, Sitzungsber. Akad. der Wiss., Wien, Math. Naturwiss. Kl. 98:616 (1889).Google Scholar
  14. 14.
    S.G. Bankoff, Heat conduction of diffusion with change of phase, in: “Advances in Chemical Engineering”, Vol. 5, (T.B. Drew, J.W. Hoopes, T. Vermeulen, eds.), Academic Press, New York (964).Google Scholar
  15. 15.
    J.C. Muehlbauer, J.E. Sunderland, Heat conduction with freezing or melting, Appl. Mech. Rev. 18:951 (1965).Google Scholar
  16. 16.
    R.L. Parker, Crystal growth mechanisms: energetics, kinetics and transport, in: “Solid State Physics”, Vol. 25, (H. Ehrenreich, F. Seitz, D. Turnbull, eds.), Academic Press, New York (1970).Google Scholar
  17. 17.
    T.R. Ockendon, R.W. Hodgkins, “Moving Boundary Problems in Heat Flow and Diffusion”, Oxford University Press, London (1975).Google Scholar
  18. 18.
    D.G. Wilson, A.D. Solomon, P.T. Boggs, “Moving Boundary Problems”, Academic Press, New York (1978).Google Scholar
  19. 19.
    B.A. Boley, An applied overview of moving boundary problems, in: “Moving Boundary Problems”, (D.G. Wilson, A.D. Solomon, P.T. Boggs, eds.), Academic Press, New York (1978).Google Scholar
  20. 20.
    C.M. Elliot, J.R. Ockendon, “Weak and Variational Methods for Moving Boundary Problems”, Pitman, Boston (1982)Google Scholar
  21. 21.
    C. Korber, “Das Gefrieren wassriger Losungen in biologischen Substanzen”, Doctoroal Dissertation, Math.Naturwiss. Fakultat, RWTH Aachen (1981).Google Scholar
  22. 22.
    C. Korber, M.W. Scheiwe, K. Wollhover, A cryomicroscope for the analysis of solute polarization during freezing, Cryobiology 21:68 (1984).CrossRefGoogle Scholar
  23. 23.
    C. Korber, M.W. Scheiwe, K. Wollhover, Solute polarizaton during planar freezing of aqueous salt solution, Int. J. Heat Mass Transfer 26:1241 (1983).CrossRefGoogle Scholar
  24. 24.
    L.I. Rubinstein, “The Stefan Problem”, Translations of Mathematical Monographs Vol. 27, American Mathematical Society, Providence (1971).Google Scholar
  25. 25.
    R.L. Levin, Generalized analytical solution for the freezing of a super-cooled aqueous solution in a finite domain, Int. J.Heat Mass Transfer 23:951 (1980).CrossRefGoogle Scholar
  26. 26.
    K. Wollhover, C. Korber, M.W. Scheiwe, U. Hartmann, Unidirectional freezing of binary aqueous solutions: an analysis of transient diffusion of heat and mass, Int. J. Heat Mass Transfer 28:761 (1985).CrossRefGoogle Scholar
  27. 27.
    J.W. Rutter, B. Chalmers, A prismatic substructure formed during solidification of metals, Can. J. Phys. 31:15 (1953).CrossRefGoogle Scholar
  28. 28.
    W.A. Tiller, K.A. Jackson, J.W. Rutter, B. Chalmers, The redistribution of solute atoms during the solidification of metals, Acta Met. 1:428 (1953).CrossRefGoogle Scholar
  29. 29.
    W.W. Mullins, R.F. Sekerka, Morphological stability of a particle growing by diffusion or heat flow, J. Appl. Phys. 34:323 (1963).CrossRefGoogle Scholar
  30. 30.
    W.W. Mullins, R.F. Sekerka, Stability of the planar interface during solidification of a dilute binary alloy, J. Appl. Phys. 35:444 (1964).CrossRefGoogle Scholar
  31. 31.
    R.F. Sekerka, Morphological stability, J. Crystal Growth 3/4:71 (1968).CrossRefGoogle Scholar
  32. 32.
    L.H. Ungar, R.A. Brown, Cellular interface morphologies in directional solidification, Phys. Rev. B. 29:1367 (1984).CrossRefGoogle Scholar
  33. 33.
    D.J. Wollind, L.A. Segel, A nonlinear stability analysis of the freezing of a dilute binary alloy, Phil. Trans. Roy. Soc. 268A:351 (1970).Google Scholar
  34. 34.
    S.R. Coriell, M.R. Cordes, W.J. Boettinger, R.F. Sekerka, Convective and interfacial instabilities during unidirectional solidification of a binary alloy, J. Crystal Growth 49:13 (1980).CrossRefGoogle Scholar
  35. 35.
    R.T. Delves, The theory of the stability of the solid-liquid interface under constitutional supercooling (I) Phys. Stat. Sol. 16:621 (1966).CrossRefGoogle Scholar
  36. 36.
    R.T. Delves, The theory of the stability of the solid-liquid interface under constitutional supercooling (II), Phys. Stat. Sol. 17:119 (1966).CrossRefGoogle Scholar
  37. 37.
    J.S. Langer, Instabilities and pattern formation in crsytal growth, Rev. Mod. Physics 52:1 (1980).CrossRefGoogle Scholar
  38. 38.
    K. Wollhover, M.W. Scheiwe, U. Hartmann, C. Korber, On morphological stability of planar phase boundaries during unidirectional transient solidification of binary aqueous solutions, Int. J. Heat Mass Transfer 28:897 (1985),CrossRefGoogle Scholar
  39. 39.
    M.E. Glicksman, Free dendritic growth, Mat. Sci. Engng. 65;45 (1984).CrossRefGoogle Scholar
  40. 40.
    J.S. Langer, Dynamics of dendritic pattern formation, Mat. Si. Engng. 65:37 (1984).CrossRefGoogle Scholar
  41. 41.
    R. Trivedi, Theory of dendritic growth during the directional solidification of binary alloys, J. Crystal Growth 49:219 (1980).CrossRefGoogle Scholar
  42. 42.
    R. Trivedi, Theory of dendritic growth under rapid solidification conditions, J. Crystal Growth 73:289 (1985).CrossRefGoogle Scholar
  43. 43.
    U. Hartmann, “Warmetechnische Aspekte de Tiefgefrierens in der Biotechnologie”, Doctoral Dissertation, Fak. Maschinenwesen, RWTH Aachen (1986).Google Scholar
  44. 44.
    C. Magono, Y. Shiotsuki, On the effect of air bubbles in ice on frictional charge separation, J. Atm. Sci. 21:666 (1964).CrossRefGoogle Scholar
  45. 45.
    N. Maeno, P. Kuroiwa, Metamorphism of air bubbles in a snow crystal, J. Glaciol. 6:561 (1967).Google Scholar
  46. 46.
    J.E. Dye, P.V. Hobbs, The influence of environmental parameters on the freezing and fragmentation of suspended water drops, J. Atm. Sci. 25:82 (1968).CrossRefGoogle Scholar
  47. 47.
    A.E. Carte, Air bubbles in ice, Proc. Phys. Soc. (London) 77:757 (1961).CrossRefGoogle Scholar
  48. 48.
    S.A. Bari, J. Hallett, Nucleation and growth of bubbles at an ice-water interface, J. Glaciology 13:489 (1974).Google Scholar
  49. 49.
    Y.E. Geguzin, A.S. Dzuba, Crystatllization of a gas-saturated melt, J. Crystal Growth 52:337 (1981).CrossRefGoogle Scholar
  50. 50.
    J. Kruuv, L.L. Brailsford, D.J. Glofcheski, J.R. Lepock, Effect of dissolved gases on freeze-thaw survival of mammalian cells, Cryo-Letters 6:233 (1985).Google Scholar
  51. 51.
    G.J. Morris, J.J. McGrath, Intracellular ice nucleation and gas bubble formation in spirogyra, Cryo-Letters 2:341 (1981).Google Scholar
  52. 52.
    P.L. Steponkus, M.F. Dowgert, Gas bubble formation during intracellular ice formation, Cryo-Letters 2:43 (1981).Google Scholar
  53. 53.
    G. Lipp, C. Korber, S. Englich, U. Hartmann, G. Rau, Investigation of the behaviour of gases dissolved in water during freezing, Cryobiology (1987, in press).Google Scholar
  54. 54.
    G. Lipp, “Das Verhalten von Gasen in wassrigen Losungen bei Frier-Tau-Vorgangen”, Diplom-Thesis, Math. Naturwiss, Fak., RWTH Aachen (1985).Google Scholar
  55. 55.
    P.S. Epstein, M.S. Plesset, On the stability of gas bubbles in liquid gas solutions, J. Chem. Phys. 18:1505 (1950).CrossRefGoogle Scholar
  56. 56.
    C. Korber, G. Rau, M.D. Cosman, E.G. Cravalho, Interaction of particles and a moving ice-liquid interface, J. Crystal Growth 63:649 (1985).CrossRefGoogle Scholar
  57. 57.
    E.J. Workman, S.E. Reynolds, Electrical phenomena occurring during the freezing of dilute aqueous solutions and their possible relationship to thunderstorm electricity, Phys. Rev. 78:254 (1950).CrossRefGoogle Scholar
  58. 58.
    A.W. Cobb, G.W.Gross, Interfacial electrical effects observed during the freezing of dilute electrolytes in water, J. Electrochem. Soc. 116:796 (1969).CrossRefGoogle Scholar
  59. 59.
    P.L. Steponkus, R.Y. Evans, Cryomiroscopy of isolated rye mesophyll cells, Cryo-Letters 3:101 (1982).Google Scholar
  60. 60.
    G.W. Gross, Ion distribution and phase boundary potentials during freezing of very dilute ionic solutions at uniform rates, J. Coll. Interface Sci. 25:270 (1967).CrossRefGoogle Scholar
  61. 61.
    A.M. Mel’nikova, Charge separation by crystallization, Sov. Phys. Crystallogr. 14:40 (1968).Google Scholar
  62. 62.
    J.P. Lodge, M.L. Baker, J.M. Pierrard, Observations on ion separation in dilute solutions by freezing, J. Chem. Phys. 24:716 (1956).CrossRefGoogle Scholar
  63. 63.
    W. Drost-Hansen, The water-ice interface as seen from the liquid side, J. Coll. Interf. Sci. 25:131 (1967).CrossRefGoogle Scholar
  64. 64.
    G.W. Gross, Solute interference effects in freezing potentials of dilute electrolytes, in: “Water Structure of the Water-polymer Interface”, (H.H.G. Jellinek, ed.,): Plenum, New York (1972).Google Scholar
  65. 65.
    H.C. Parreira, A.J. Eydt, Electric potentials generated by freezing dilute aqueous solutions, Nature 208:33 (1965).CrossRefGoogle Scholar
  66. 66.
    A. Hubel, C. Korber, E.G. Cravalho, G. Rau, Transient electrical potentials measured during the uni-directional freezing of NaCl/H2O solutions, J. Crystal Growth (1987, in preparation).Google Scholar
  67. 67.
    A. Hubel, “Electrical transients produced during the freezing of NaCl/H2O solutions”, Master’s Thesis, Dept. Mech. Engng., M.I.T., Cambridge (1985).Google Scholar
  68. 68.
    V. LeFebre, The freezing potential effect, J. Co11. Interface Sci. 25:263 (1967).CrossRefGoogle Scholar
  69. 69.
    A.A. Chernov, A.M. Mel’nikova, Theory of electrical phenomena accompanying crystallization: I. The electric field in a crystallizing acqueous solution of an electrolyte, Sov. Phys. Crystallogr. 16:404 (1971).Google Scholar
  70. 70.
    A.A. Chernov, A.M. Mel’nikova, Theory of electrical phenomena accompanying crystallization: II. Potential differences between the phases in the crystallization of ice and naphtalene, Sov. Phys. Crystallogr. 16:413 (1971). p172Google Scholar
  71. ReferencesGoogle Scholar
  72. 1.
    G.W. Gross, Solute interference effects in freezing potentials of dilute electrolytes in: Water Structure at the Water-polymer Interface, (ed. H.H.G. Jellinek) p 106, Plenum, New York (1982).Google Scholar
  73. 2.
    Y.E. Geguzin and A.S. Dzuba, Crystallization of a gas-saturated melt, J. Crystal Growth 52:337 (1981).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Christoph Körber
    • 1
  • Günter Rau
    • 1
  1. 1.Helmholtz-Institut für Biomedizinische TechnikRWTH AachenAachenWest Germany

Personalised recommendations