Chromogenic Substrates for Enzyme Immunoassay

  • Bärbel Porstmann
  • Tomas Porstmann


Out of a variety of enzymes which have been described according to their kinetics and structure only a few have turned out to be marker enzymes in the enzyme immunoassay (EIA). The ones that are mostly used are horseradish peroxidase (HRP), calf intestinal alkaline phosphatase (AP) and ß-galactosidase from E. coli (ßGal). The suitability of enzymes as markers is not only determined by their great molar activity that is to be largely maintained even after binding to immunoreactants, their stability and commercial availability but especially by their simple, practicable and sensitive detectability.


Absorbance Measurement Marker Enzyme Chromogenic Substrate Nicotinamide Adenine Dinucleotide Nitro Blue Tetrazolium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Kaissi, E. and Mostratos, A., 1983, Assessment of substrates for horseradish peroxidase in enzyme immunoassay, J. Immunol. Methods, 58: 127–132.PubMedCrossRefGoogle Scholar
  2. Ames, B.N., Kämmen, H.O., and Yamasaki, E., 1975, Hairdyes are mutagenic: Identification of a variety of mutagenic ingredients, Proc. Natl. Acad. Sci., 72: 2423–2427.PubMedCrossRefGoogle Scholar
  3. Artiss, J.D., McGowan, M.W., Strandbergh, D.R., and Zak, B., 1982, A procedure for the kinetic colorimetric determination of serum cholinesterase activity, Clin. Chim. Acta, 124: 141–148.PubMedCrossRefGoogle Scholar
  4. Artiss, J.D., Strandbergh, D.R., and Zak, B., 1983, On the use of a sensitive indicator reaction for the automated glucose oxidase-peroxidase coupled reaction, Clin. Biochem., 16: 334–337.PubMedCrossRefGoogle Scholar
  5. Barham, D., and Trinder, P., 1972, An improved color reagent for the determination of blood glucose by the oxidase system, Analyst, 97: 142–145.PubMedCrossRefGoogle Scholar
  6. Bos, E.S., van der Doelen, A.A., van Rooy, N., and Schuurs, A.H.W.M., 1981, 3,3, 5,5-tetramethylbenzidine as an Ames test negative chromogen for horse-radish peroxidase in enzyme-immunoassay, J. of Immunoassay, 2: 187–204.CrossRefGoogle Scholar
  7. Capaldi, D.J., and Taylor, K.E., 1983, A new peroxidase color reaction: Oxidative coupling of 3-methyl-2-benzothiazoline hydrazone (MBTH) with its formaldehyde azine. Application to glucose and choline oxidases, Anal. Biochem., 129: 329–336.PubMedCrossRefGoogle Scholar
  8. Chandler, H.M., Cox, J.C., Healey, K., MacGregor, A., Premier, R.R., and Hurrell, J.G.R., 1982, An investigation of the use of urease-antibody conjugates in enzyme immunoassays, J. Immunol. Methods, 53: 187–194.PubMedCrossRefGoogle Scholar
  9. Chandler, H.M., and Hurell, G.R., 1982, A new enzyme immunoassay system suitable for field use and its application in a snake venom detection kit, Clin. Chim. Acta, 121: 225–230.PubMedCrossRefGoogle Scholar
  10. Cox, C., 1983, NAD labeled immunoassays, Trends in Anal. Chem., 2: 129–131.CrossRefGoogle Scholar
  11. Dona, V., 1985, Homogeneous colorimetric enzyme inhibition immunoassay for cortisol in human serum with Fab anti-glucose-6-phosphate dehydrogenase as a label modulator, J. Immunol. Methods, 82: 65–75.PubMedCrossRefGoogle Scholar
  12. Ellens, D.J., and Gielkens, A.L.J., 1980, A simple method for the purification of 5-aminosalicylic acid. Application of the product as substrate in enzyme-linked immunosorbent assay (ELISA), J. Immunol. Methods, 37: 325–332.PubMedCrossRefGoogle Scholar
  13. Gallati, H., 1977, Aktivitätsbestimmung von Peroxidase mit Hilfe des “Trinder-Reagens”, J., Clin. Chem. Clin. Biochem., 15: 699–703.Google Scholar
  14. Gallati, H., 1979, Peroxidase aus Meerrettich: Kinetische Studien sowie Optimierung der Aktivitätsbestimmung mit den Substraten H2O2 und ABTS, J. Clin. Chem. Clin. Biochem., 17: 1–7.PubMedGoogle Scholar
  15. Gallati, H., and Brodbeck, H., 1982a, Peroxidase aus Meerrettich: Kinetische Studien und Optimierung der Aktivitätsbestimmung mit den Substraten H2O2 und o-Phenylendiamin, J.Clin. Chem. Clin. Biochem., 20: 221–225.PubMedGoogle Scholar
  16. Gallati, H., and Brodbeck, H., 1982b, Peroxidase aus Meerrettich: Reagens zum Abstoppen der katalytischen Umsetzung der Substrate H2O2 und 2,2′-Azino-di(3-ethyl-benzthiazolinsulfonsäure-(6) (ABTS), J. Clin. Chem. Clin. Biochem., 20: 757–760.PubMedGoogle Scholar
  17. Gallati, H., and Pracht, J., 1985, Peroxidase aus Meerrettich: Kinetische Studien und Optimierung der Peroxidase-Aktivitätsbestimmung mit den Substraten H2O2 und 3,3′, 5,5′-Tetramethylbenzidin, J. Clin. Chem. Clin. Biochem., 23: 435–460.Google Scholar
  18. Geoghegan, W.D., Struve, M.F., and Jordon, R.E., 1983, Adaption of the Ngo-Lenhoff Peroxidase assay for solid phase ELISA, J. Immunol, Methods, 60: 61–68CrossRefGoogle Scholar
  19. Gochman, N., and Schmitz, J.M., 1971, Automated determination of uric acid with use of a uricase-peroxidase system, Clin. Chem., 17: 1154–1159.PubMedGoogle Scholar
  20. Harper, J.R., and Orengo, A., 1981, The preparation of an immuno-globulin-amyloglucosidase conjugate and its quantitation by an enzyme-cycling assay, Anal. Biochem., 113: 51–57.PubMedCrossRefGoogle Scholar
  21. Hofmann, F., Hubl, W., and Schütting, R., 1983, Eine mechanisierte Bestimmungsmethode für Meerrettich-Peroxidase am Reaktionsgeschwindigkeitsanalysator mit den Chromogenen o-Dianisidin und o-Phenylendiamin zur Anwendung beim ELISA, Z. med. Labor,-Diagn., 24: 155–160.Google Scholar
  22. Hofmann, J., and Sernetz, M., 1984, Immobilized enzyme kinetics analyzed by flow-through microfluorimetry. Resorufin-ß-D-galactopyranoside as a new fluorogenic substrate for ß-galactosidase, Anal. Chim. Acta, 163: 67–72.CrossRefGoogle Scholar
  23. Hildebrandt, A., 1986, Verfahren zur Bestimmung der Enzymaktivität gelöster und trägergebundener Peroxidase-markierter Antikörper, Z. med. Labor.-Diagn., 6: 149–153.Google Scholar
  24. Johannsson, A., Stanley, Ch. J., and Seif, H.C., 1985, A fast highly sensitive colorimetric enzyme immunoassay system demonstrating benefits of enzyme amplification in clinical chemistry, Clin. Chim. Acta., 148: 119–124.PubMedCrossRefGoogle Scholar
  25. Klapper, M.H., and Hackett, D.P., 1963, The oxidatic activity of horseradish peroxidase. I. Oxidation of hydro-and naphthohydroquinones, J. Biol. Chem., 238: 3736–3742.PubMedGoogle Scholar
  26. Lin, E.H., and Gibson, D.M., 1977, Visualization of peroxidase isoenzymes with eugenol, a noncarcinogenic substrate, Anal. Biochem., 79: 597–601.CrossRefGoogle Scholar
  27. McGowan, M.W., Artiss, J.D., Strandbergh, D.R., and Zak, B., 1983, A peroxidase-coupled method for the colorimetric determination of serum triglycerides, Clin. Chem., 29: 538–542.PubMedGoogle Scholar
  28. Meiattini, F., Prenzipe, L., Bardelli, F., Giannini, G., and Tarli, P., 1978, The 4-hydroxybenzoate/4-aminophenazone chromogenic system used in the enzymic determination of serum cholesterol, Clin. Chem., 24: 2161–2165.PubMedGoogle Scholar
  29. Moss, D.W., Self, C.H., Whitaker, K.B., Bailyes, E., Siddle, K., Johannson, A., Stanley, C.J., and Cooper, E.H., 1985, An enzyme-amplified monoclonal immuno-enzymometric assay for prostatic acid phosphatase, Clin. Chim. Acta., 152: 85–94.PubMedCrossRefGoogle Scholar
  30. Ngo, T.T., and Lenhoff, H.M., 1980, A sensitive and versatile chromogenic assay for peroxidase and peroxidase-coupled reactions, Anal. Biochem., 105: 389–397.PubMedCrossRefGoogle Scholar
  31. Orsonneau, J.L., Meflah, K., Lustenberger, P., Cornu, G., and Bernard, S., 1982, Sensitation and visualisation of biochemical measurements using the NAD/NADH system by means of Meldola blue. I. Principle and application to the continous flow measurement of LDH and HBDH activities in serum, Clin. Chim. Acta, 125: 177–184.PubMedCrossRefGoogle Scholar
  32. Paul, K.G., Ohlsson, P.J., and Jönsson, N.A., 1982, The assay of peroxidases by means of dicarboxidine on enzyme-linked immunosorbent assay level, Anal. Biochem., 124: 102–107.PubMedCrossRefGoogle Scholar
  33. Persijn, J.P., and Jonker, K.M., 1978, A terminating reagent for the peroxidase-labelled enzyme immunoassay, J. Clin. Chem. Clin. Biochem., 16: 531–532.PubMedGoogle Scholar
  34. Porstmann, B., Porstmann, T., and Gaede, D., 1980, Optimierung der Aktivitätsbestimmung von Meerrettichperoxidase, Z. med. Labor.-Diagn., 21: 201–209.Google Scholar
  35. Porstmann, B., Porstmann, T., Gaede, D., Nugel, E., and Egger, E., 1981a, Temperature dependent rise in activity of horseradish peroxidase caused by non-ionic detergents and its use in enzyme-immunoassay, Clin. Chim. Acta, 109: 175–181.PubMedCrossRefGoogle Scholar
  36. Porstmann, B., Porstmann, T., and Nugel, E., 1981b, Comparison of chromogens for the determination of horseradish peroxidase as a marker in enzyme immunoassay, J. Clin. Chem. Clin. Biochem., 19: 435–439.PubMedGoogle Scholar
  37. Porstmann, B., Porstmann, T., Nugel, E., and Evers, U., 1985a, Which of the commonly used marker enzymes gives the best results in colorimetric and fluorimetric enzyme immunoassays: horseradish peroxidase, alkaline phosphatase or ß-galactosidase, J. Immunol. Methods 79: 27–37.PubMedCrossRefGoogle Scholar
  38. Porstmann, T., Porstmann, B., Wietschke, R., von Baehr, R., and Egger, E., 1985b, Stabilization of the substrate reaction of horseradish peroxidase with o-phenylenediamine in the enzyme immunoassay, J. Clin. Chem. Clin. Biochem., 23: 41–44.PubMedGoogle Scholar
  39. Pradelles, Ph., Grassi, J., and Maclouf, J., 1985, Enzyme immunoassay of eicosanoids using acetylcholine esterase as label: an alternative to radioimmunoassay, Anal. Chem., 57: 1170–1173.PubMedCrossRefGoogle Scholar
  40. Rathlev, T., and Franks, G.F., 1982, New procedure for detecting antinuclear antibodies using glucose oxidase immunoenzyme technique, Am. J. Clin. Pathol., 677: 705–709.Google Scholar
  41. Stanley, C.J., Paris, F., Plumb, A., Webb, A., and Johannson, A., 1985, Enzyme amplification: A new technique for enhancing the speed and sensitivity of enzyme immunoassays, Int. Clin. Prod. Rev., 7/8: 44–51.Google Scholar
  42. Teshima, Sh., Mitsuhida, N., and Ando, M., 1985, Determination of-amylase in biological fluids using a new substrate (ß-2-chloro-4-nitrophenyl-maltopentaoside), Clin. Chim. Acta, 150: 165–174.PubMedCrossRefGoogle Scholar
  43. Trinder, P., 1969, Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor, Ann. Clin. Biochem., 6: 24–27.Google Scholar
  44. Werner, W., Rey, H.-G., and Wielinger, H., 1970, Über die Eigenschaften eines neuen Chromogens für die Blutzuckerbestimmung nach der GOD/POD-Methode, Z. Anal. Chemie, 252: 224–228.CrossRefGoogle Scholar
  45. Wimmer, M.C., Artiss, J.D., and Zak, B., 1985, Peroxidase coupled method for kinetic colorimetry of total creatine kinase activity in serum, Clin. Chem., 31: 1616–1620.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Bärbel Porstmann
    • 1
    • 2
  • Tomas Porstmann
    • 1
    • 2
  1. 1.Institute of Pathological and Clinical BiochemistryGermany
  2. 2.Institute of Medical Immunology, Faculty of Medicine (Charite)Humboldt UniversityBerlinGDR

Personalised recommendations