Spin Membrane Immuno Assay in Serology

  • A. I. Vistnes


In 1964 artificial membranes were prepared and described for the very first time by the English scientists Bangham and Home (1964). These membranes formed spontaneously when phospholipids were put into an aqueous solution. The model membranes were onion-like structures where the different layers of the “onions” consist of lipid bilayers. Between the layers aqueous spaces were entrapped. These model membranes are called multilammellar liposomes, or in short liposomes.


Electron Spin Resonance Signal Spin Label Model Membrane Antibody Concentration Alternative Complement Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, T. M. and Cleland, T. M., 1980, Serum Induced leakage of liposome contents, Biochim. Biophys. Acta, 597: 418–426.PubMedCrossRefGoogle Scholar
  2. Alving, C. R., Richards, R. L., and Guirguis, A. A., 1977, Cholesterol-dependent human complement activation resulting in damage to liposomal model membranes, J. Immunol., 118: 342–347.PubMedGoogle Scholar
  3. Alving, C. R., 1984, Natural antibodies against phospholipids and liposomes in humans, Biochem. Soc. Trans., 12: 342–344.PubMedGoogle Scholar
  4. Bangham, A. D. and Home, R. W., 1964, Negative staining of phospholipids and their structural modification by surface-active agens as observed in the electron microscope, J. Mol. Biol., 8: 660–668.PubMedCrossRefGoogle Scholar
  5. Blaedel, W. J. and Boguslaski, R. C., 1978, Chemical amplification in analysis: A review, Amer. Chem. Soc., 50: 1026–1032.Google Scholar
  6. Boggs, J. M., Samji, N., Moscarello, M. A., Hashim, G. A., and Day, E. D., 1983, Immune lysis of reconstituted myelin basic protein-lipid vesicles and myelin vesicles, J. Immunol., 130: 1687–1694.PubMedGoogle Scholar
  7. Boggs, J. M., Samji, N., and Adamo, S. A., 1984, Immune lysis of lipid vesicles containing myelin basic protein or glycolipid antigens by multiple sclerosis and normal sera, J. Neurolog. Sci., 66: 339–348.CrossRefGoogle Scholar
  8. Braman, J. C., Broeze, R. J., Bowden, D. W., Myles, A., Fulton, T. R., Rising, M., Thurston, J., Cole, F. X., and Vovis, G. F., 1984, Enzyme membrane immunoassay (EMIA), Biotech., 2: 349–355.CrossRefGoogle Scholar
  9. Brulet, P. and McConnell, H. M., 1976, Lateral hapten mobility and immuno-chemistry of model membranes, Proc. Natl. Acad. Sci. USA, 73: 2977–2981.PubMedCrossRefGoogle Scholar
  10. Brulet, P. and McConnell, H. M., 1977, Structural and dynamical aspects of membrane immunochemistry using model membranes, Biochem., 16: 1209–1217.CrossRefGoogle Scholar
  11. Brunner, J., Skrabal, P., and Hauser, H., 1976, Single bilayer vesicles prepared without sonication; Physico-chemical properties, Biochim. Biophys. Acta., 455: 322–331.PubMedCrossRefGoogle Scholar
  12. Budker, V. G., Mustaev, A. A., Pressman, E. K., Roschke, V. V., and Vakhru-sheva, T. E., 1982, Adsorption of non-membrane proteins on the surface of model phospholipid membranes, Biochim. Biophys. Acta., 688: 541–546.PubMedCrossRefGoogle Scholar
  13. Chan, S. W., Tan, C. T., and Hsia, J. C., 1978, Spin membrane immunoassay: Simplicity and specificity, J. Immunol. Methods, 21: 185–195.PubMedCrossRefGoogle Scholar
  14. Crook, S. J., Boggs, J. M., Vistnes, A. I., and Koshy, K. M., 1986a, Factors affecting surface of glycolipids: Influence of lipid environment and ceramide composition on antibody recognition of cerebroside sulfate in liposomes, Biochem., in press.Google Scholar
  15. Crook, S. J., Boggs, J. M., Vistnes, A. I., and Zalc, B., 1986b, Characterization of anti-cerebroside sulfate antisera from liposome immune lysis data, submitted for publication.Google Scholar
  16. Cuppoletti, J., Mayhew, E., Zobel, C. R., and Jung, C. Y., 1981, Erythrosomes: Large proteoliposomes derived from crosslinked human erythrocyte cytoskeletons and exogenous lipid, Proc. Natl. Acad. Sci. USA, 78: 2786–2790.PubMedCrossRefGoogle Scholar
  17. Dorn, K. and Ringsdorf, H., 1982, Polymeric monolayers and liposomes as model for biomembranes and cells, in: “Transport in Biomembranes: Model systems and reconstitution,” R. Antolini, A. Gliozzi, and A. Gorio, eds., Raven Press, New York, p 13–25.Google Scholar
  18. Esser, A. F., 1980, Principles of electron spin resonance assays and Immunologic applications, in: “Immunoassays, clinical laboratory techniques for the 1980s,” R. M. Nakamura, W. R. Dito, and E.S. Tucker, Alan R. Liss, New York. p 213–233.Google Scholar
  19. Feix, J. B., Khatri, B., McQuillen, M. P., and Koethe, S. M., 1984, Immune reactivity against membranes containing ganglioside GM1 in chronicprogressive multiple sclerosis: Observation by spin-membrane immunoassay, Immunol. Com., 13: 465.Google Scholar
  20. Finkelstein, M. C. and Weissmann, G., 1979, Enzyme replacement via liposomes. Variations in lipid composition determine liposomal integrity in biological fluids, Biochim. Biophys. Acta, 587: 202–216.PubMedCrossRefGoogle Scholar
  21. Freytag, J. W. and Litchfield, W. J., 1984, Liposome-mediated immunoassays for small haptens (digoxin) independent of complement, J. Immunol. Methods, 70: 133–140.PubMedCrossRefGoogle Scholar
  22. Froncisz, W. and Hyde, J. S., 1982, The loop-gap resonator: A new microwave lumped circuit ESR sample structure, J. Magn. Reson., 47: 515–521.Google Scholar
  23. Geiger, B. and Smolarsky, M., 1977, Immunochemical determination of ganglioside GM2, by inhibition of complement-dependent liposome lysis, J. Immunol. Methods, 17: 7–19.PubMedCrossRefGoogle Scholar
  24. Gujral, S., Patel, N., Lovekar, C. D., and Seth, D., 1981, Absence of lipoproteins in serum of golden hamster Mesocricetus Auratus, Curr. Sci. India, 50: 363–364.Google Scholar
  25. Gupta, C. M., Bali, A., and Dhawan, S., 1981, Modification of phospholipid structure results in greater stability of liposomes in serum, Biochim. Biophys. Acta, 648: 192–198.PubMedCrossRefGoogle Scholar
  26. Haga, M., Itagaki, H., Sugawara, S., and Okano, T., 1980, Liposome immunosensor for theophylline, Biochem. Biophys. Res. Com., 95: 187–192.PubMedCrossRefGoogle Scholar
  27. Haga, M., Sugawara, S., and Itagaki, H., 1981, Drug sensor: Liposome immunosensor for theophylline, Analyt. Biochem., 118: 286–293.PubMedCrossRefGoogle Scholar
  28. Hsia, J. C., and Tan, C. T., 1978, Membrane immunoassay: Principle and applications of spin membrane immunoassay, Ann. N. Y. Acad. Sci., 308: 139–148.PubMedCrossRefGoogle Scholar
  29. Hobart, M. J. and McConnell, I., 1975, “The immune system, a source on the molecular and cellular basis of immunity,” Blackwell, Oxford, 357 pp.Google Scholar
  30. Humphries, G. K., and McConnell, H. M., 1974, Immune lysis of liposomes and erythrocyte ghosts loaded with spin label, Proc. Natl. Acad. Sci. US., 71: 1691–1694.CrossRefGoogle Scholar
  31. Humphries, G. M. K. and McConnell, H. M., 1975, Antigen mobility in membranes and complement-mediated immune attack, Proc. Natl. Acad. Sci. USA, 72: 2483–2487.CrossRefGoogle Scholar
  32. Humphries, G. M. K. and McConnell, H. M., 1977, Membrane-controlled depletion of complement activity by spin-label-specific IgM, Proc. Natl. Acad. Sci. USA, 74: 3537–3541.PubMedCrossRefGoogle Scholar
  33. Ishimori, Y., Yasuda, T., Tsumita, T., Notsuki, M., Koyama, M., and Tadakuma, T., 1984, Liposome immune lysis assay (LILA): A simple method to measure anti-protein antibody using protein antigen-bearing liposomes, J. Immunol. Methods, 75: 351–360.PubMedCrossRefGoogle Scholar
  34. Kataoka, T., Inoue, K., Galanos, C., and Kinsky, S. C., 1971a, Detection and specificity of lipid A antibodies using liposomes sensitized with lipid A and bacterial lipopolysaccharides, Eur. J. Biochem., 24: 123–127.PubMedCrossRefGoogle Scholar
  35. Kataoka, T., Inoue, K., Luderitz, O., and Kinsky, S. C., 1971b, Antibody-and complement-dependent damage to liposomes prepared with bacterial lipopolysaccharides, Eur. J. Biochem., 21: 80–85.PubMedCrossRefGoogle Scholar
  36. Kinsky, S. C., Haxby, J. A., Zopf, D. A., Alving, C. R., and Kinsky, C. B., 1969, Complement-dependent damage to liposomes prepared from pure lipids and Forssman hapten, Biochem., 8: 4149–4158.CrossRefGoogle Scholar
  37. Kinsky, S. C., 1972, Antibody-complement interaction with lipid model membranes, Biochim. Biophys. Acta, 265: 1–23.PubMedGoogle Scholar
  38. Kinsky, S. C. and Nicolotti, R. A., 1977, Immunologieal properties of model membranes, Ann. Rev. Biochem., 46: 49–67.PubMedCrossRefGoogle Scholar
  39. Kirby, C. and Gregoriadis, G., 1981, Plasma-induced release of solutes from small unilammellar liposomes is associated with pore formation in the bilayers, Biochem. J., 199: 251–254.PubMedGoogle Scholar
  40. Kornberg, R. D. and McConnell, H. M., 1971, Inside-outside transitions of phospholipids in vesicle membranes, Bigchem., 10: 1111–1120.Google Scholar
  41. Litchfield, W. J., Freytag, J. W., and Adamich, M., 1984, Highly sensitive immunoassays based on use of liposomes without complement, Clin. Chem., 30: 1441–1445.PubMedGoogle Scholar
  42. Mori, T., Fujii, G., Kawamura, A. Jr., Yasuda, T., Naito, Y., and Tsumita, T., 1982, Forssman antibody levels in sera of cancer patients, Immunol. Com., 11: 217–225.Google Scholar
  43. Okada, N., Yasuda, T., Tsumita, T., and Okada, H., 1982a, Activation of the alternative complement pathway of guinea-pig by liposomes incorporated with trinitrophenylated phosphatidylethanolamine, Immunol., 45: 115–124.Google Scholar
  44. Okada, N., Yasuda, T., Tsumita, T., Shinomiya, H., Utsumi, S., and Okada, H., 1982b, Regulation by glycophorin of complement activation via the alternative pathway, Biochem. Biophys. Res. Com., 108: 770–775.PubMedCrossRefGoogle Scholar
  45. Okada, H., Okada, N., and Yasuda, T., 1983a, Activation of the alternative complement pathway by IgM antibody reacted on paragloboside incorporated into liposome membrane, Molec. Immunol., 20: 499–500.CrossRefGoogle Scholar
  46. Okada, N., Yasuda, T., Tsumita, T., and Okada, H., 1983b, Membrane sialoglycolipids regulate the activation of the alternative complement pathway by liposomes containing trinitrophenylamino-caproyldipalmito-ylphosphatidylethanolamine, Immunol., 48: 129–140.Google Scholar
  47. Okada, N., Yasuda, T., Tsumita, T., and Okada, H., 1983c, Activation of the alternative complement pathway by natural antibody to glycolipids in guinea-pig serum, Immunol., 50: 75–84.Google Scholar
  48. Okada, N., Yasuda, T., and Okada, H., 1985, Antibody-mediated alternative complement pathway activation resists inhibition by sialoglycolipids, J. Immunol., 134: 3316–3319.PubMedGoogle Scholar
  49. D’Orazio, P. and Rechnitz, G. A., 1977, Ion electrode measurements of complement and antibody levels using marker-loaded sheep red blood cell ghosts, Anal. Chem., 49: 2083–2086.PubMedCrossRefGoogle Scholar
  50. Parce, J. W. and McConnell, H. M., 1980, Kinetics of antibody-dependent activation of the first component of complement on lipid bilayer membranes, Biochem. Biophys. Res. Comm., 93: 235–242.PubMedCrossRefGoogle Scholar
  51. Plant, A. L., 1986, A serum complement assay system based on lysis of lipid vesicles, (Submitted for publication).Google Scholar
  52. Rosenqvist, E. and Vistnes, A. I., 1977, Immune lysis of spin label loaded liposomes incorporating cardiolipin; a new sensitive method for detecting anticardiolipin antibodies in syphilis serology, J. Immunol. Methods, 15: 147–155.PubMedCrossRefGoogle Scholar
  53. Rosenqvist, E., Michaelsen, T. E., and Vistnes, A. I., 1980, Effect of streptolysin O and digitonin on egg lecithin/cholesterol vesicles, Biochim. Biophys. Acta, 600: 91–102.PubMedCrossRefGoogle Scholar
  54. Schall, R. F. Jr. and Tenoso, H. J., 1981, Alternatives to radioimmuno-assay: Labels and methods, Clin. Chem., 27: 1157–1164.PubMedGoogle Scholar
  55. Scherphof, G., Damen, J., and Hoekstra, D., 1981, Interactions of liposomes with plasma proteins and components of the immune system, in “Liposomes: From physical structure to therapeutic applications,” C. G. Knight, ed., Elsevier/North-Holland biomedical Press, Amsterdam, p 299–322.Google Scholar
  56. Shiba, K., Umezawa, Y., Watanabe, T., Ogawa, S., and Fujiwara, S., 1980, Thin-layer potentiometric analysis of lipid antigen-antibody reaction by tetrapentylammonium (TPA+) ion loaded liposomes and TPA+ ion selective electrode, Anal. Chem., 52: 1610–1613.PubMedCrossRefGoogle Scholar
  57. Shin, M. L., Paznekas, W. A., and Mayer, M. M., 1978, On the mechanism of membrane damage by complement: The effect of length and unsaturation of the acyl chains in liposomal bilayers and the effect of cholesterol concentration in sheep erythrocyte and liposomal membranes, J. Immunol., 120: 1996–2002.PubMedGoogle Scholar
  58. Six, H.R., Uemura, K-i., and Kinsky, S. C., 1973, Effect of immunoglobulin class and affinity on the initiation of complement-dependent damage to liposomal model membranes sensitized with dinitrophenylated phospholipids, Biochem., 12: 4003–4011.CrossRefGoogle Scholar
  59. Smolarsky, M., Teitelbaum, D., Sela, M., and Gitler, C., 1977, A simple fluorescent method to determine complement-mediated liposome immune lysis, J. Immunol. Methods, 15: 255–265.PubMedCrossRefGoogle Scholar
  60. Szoka, F. Jr. and Papahadjopoulos, D., 1978, Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation, Proc. Natl. Acad. Sci. USA, 75: 4194–4198.PubMedCrossRefGoogle Scholar
  61. Szoka, F. Jr. and Papahadjopoulos, D., 1980, Comparative properties and methods of preparation of lipid vesicles (liposomes), Ann. Rev. Biophys. Bioeng., 9: 467–508.CrossRefGoogle Scholar
  62. Takashi, T., Inoue, K., and Nojima, S., 1980, Immune reactions of liposomes containing cardiolipin and their relation to membrane fluidity, J. Biochem., 87: 679–685.PubMedGoogle Scholar
  63. Tan, C. T., Chan, S. W., and Hsia, J. C., 1981a, Specific anti-thyroxine antisera induced by thyroxine sensitized liposomes, Immunol. Com., 10: 27–34.Google Scholar
  64. Tan, C. T., Chan, S. W., and Hsia, J. C., 1981b, Membrane immunoassay: A spin membrane immunoassay for thyroxine, in: “Methods in Enzymology, Vol 74: Immunochemical techniques, Part C,” J. J. Langone and H. Van Vunakis, eds., Academic Press, New York, p 152–161.Google Scholar
  65. Uemura, K-i., and Kinsky, S. C., 1972, Active vs. passive sensitization of liposomes toward antibody and complement by dinitrophenylated derivatives of phosphatidylethanolamine, Biochem., 11: 4085–4094.CrossRefGoogle Scholar
  66. Uemura, K-i., Yuzawa-Watanabe, M., Kitazawa, N., and Taketomi, T., 1980, Liposome agglutination and liposomal membrane immune-damage assay for the characterization of antibodies to glycosphingolipids, J. Biochem., 87: 1641–1648.PubMedGoogle Scholar
  67. Uemura, K-i., Hattori, H., Kitazawa, N., and Taketomi, T., 1982, Immunochemical determination of Forssman and blood group A-active glycolipids in human gastric mucosa by inhibition assay of liposome lysis, J. Immunol. Methods, 53: 221–232.PubMedCrossRefGoogle Scholar
  68. Umezawa, Y., Sofue S., and Takamoto, Y., 1984, Thin-layer ion-selective electrode detection of anticardiolipin antibodies in syphilis serology, Talanta., 31: 375–378.PubMedCrossRefGoogle Scholar
  69. Vistnes, A. I. and Puskin, J. S., 1981, A spin label method for measuring internal volumes in liposomes or cells, applied to Ca-dependent fusion of negatively charged vesicles, Biochim. Biophys. Acta, 644: 244–250.PubMedCrossRefGoogle Scholar
  70. Vistnes, A. I. and Wormald, D. I., 1982, A g-value controlled device for amplitude measurements in electron paramagnetic resonance, J. Magnetic Resgn., 46: 125–128.Google Scholar
  71. Vistnes, A. I., 1983, Spin label methodology in membrane research with applications to immunology, Dr. Philos. dissertation, University of Oslo, Norway.Google Scholar
  72. Vistnes, A. I., Rosenqvist, E., and Froholm, L. O., 1983, Spin membrane immunoassay for use in meningococcal serology, J. Clin. Microbiol., 18: 905–911.PubMedGoogle Scholar
  73. Vistnes, A. I., 1984, A new method of evaluating complement mediated lysis of liposomes, J. Immuno1. Methods, 68: 251–261.CrossRefGoogle Scholar
  74. Wei, R., Alving, C. R., Richards, R. L., and Copeland, E. S., 1975, Liposome spin immunoassay: A new sensitive method for detecting lipid substances in aqueous media, J. Immunol. Methods, 9: 165–170.PubMedCrossRefGoogle Scholar
  75. Wood, C. and Kabat, E. A., 1981, Immunochemical studies of conjugates of isomaltosyl oligosaccharides to lipid, J. Exp. Med., 154: 432–449.PubMedCrossRefGoogle Scholar
  76. Yasuda, T., Naito, Y., Tsumita, T., and Tadakuma, T., 1981, A simple method to measure anti-glycolipid antibody by using complement-mediated immune lysis of fluorescent dye-trapped liposomes, J. Immunol. — Methods, 44: 153–158.PubMedCrossRefGoogle Scholar
  77. Yasuda, T., Ueno, J., Naito, Y., and Tsumita, T., 1982, Antiglycolipid antibodies in human sera, Adv. Exp. Med. Biol., 152: 457–465.PubMedGoogle Scholar
  78. Yost, Y., Polnaszek, C. F., Mason, R. P., and Holtzman, J. L., 1981, Application of spin labeling to drug assays, J. Label. Compoun. Radiopharm., 18: 1089–1097.CrossRefGoogle Scholar
  79. Zemmour, J., Portoukalian, J., and Dore, J. F., 1984, Serological specificity of the liposome lysis test for measurement of anti-ganglioside antibodies. A comparison with hemagglutination inhibition, J. Immunol. Methods, 66: 331–340.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. I. Vistnes
    • 1
  1. 1.Department of PhysicsUniversity of OsloOslo 3Norway

Personalised recommendations