Modeling First-Pass Metabolism

  • John G. Wagner
Part of the NATO ASI Series book series (NSSA, volume 145)


Table 1 lists 66 drugs which exhibit a first-pass effect. A reasonable definition of a first-pass drug is one that exhibits a significant arterial-venous concentration difference at steady-state. Also, after oral administration, and when there is complete absorption of the dose, the area under the blood concentration-time curve is less than the area under the curve when the drug is administered intravenously at the same dose. Figure 1 depicts the meaning of the area (AUC).


Timolol Maleate Dihydroergotamine Mesylate Sinusoidal Perfusion Butorphanol Tartrate Venous Equilibration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrews, J. C., Knutsen, C., Stetson, P. L., Wagner, J.G. and Ensminger, W. D. Hepatic pharmokinetics of 5-bromo-2’-deoxyuridine (BUDR) in a canine model. Clin. Pharmacol. Ther., 41:160 (1987), Abstract II ID-2.Google Scholar
  2. Bass, L. Keiding, S. Winkler, K. and Tygstrup, N. Enzymatic elimination of substrates flowing through the intact liver. J. Theor. Biol., 61:393–409 (1976).PubMedCrossRefGoogle Scholar
  3. Bass, L., Robinson, P. and Bracken, A. J. Hepatic elimination of flowing substrates: The distribumodel. J. Theor. Biol., 72:161–184 (1978).PubMedCrossRefGoogle Scholar
  4. Gillette, J. R. Factors affecting drug metabolism. Ann. N.Y. Acad. Sci., 179:43–66 (1971).PubMedCrossRefGoogle Scholar
  5. Knol, J. A., Stetson, P. L., Wagner, J. and Ensminger, W. D. Hepatic pharmacokinetics of 5-bromo-2’deoxyuridine (BUDR) in the rabbit. Clin. Pharmacol. Ther, 41:171 (1987), Abstract #PPF-3.Google Scholar
  6. Morgan, D. J., Jones, D. B. and Smallwood, R. A. Modeling of substrate elimination by the liver: Has the albumin receptor model superseded the well-stirred model? Hepatology 5:1231–1235 (1985).PubMedCrossRefGoogle Scholar
  7. Pang, K. S. and Rowland, M. Hepatic clearance of drugs. I. Theoretical consideration of a “well-stirred” model and a “parallel-tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance. J. Pharmacokin. Biopharm. 5:625–653 (1977). II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel-tube” model using lidocaine in the perfused rat liver in situ preparation. ibid 5:655680 (1977). III. Additional experimental evidence supporting the “well-stirred” model, using metabolite (MEGX) generated from lidocaine under varying hepatic blood flow rates and linear conditions in the perfused rat liver in situ preparation. ibid 5:681-699 (1977).Google Scholar
  8. Pang, K. S. Metabolic first-pass effects. J. Clin. Pharmacol. 26:580–582 (1986).PubMedGoogle Scholar
  9. Roberts, M. S. and Rowland, M. A dispersion model of hepatic elimination. 1. Formulation of the model and bolus considerations. J. Pharmacokin. Biopharm. 14:227–260 (1986).Google Scholar
  10. Robinson, P. J. Aspects of mathematical liver kinetics. The steady state statistical mechanics of hepatic elimination, a thesis. Department of Mathematics, University of Queensland, Brisbane, Australia, 1979.Google Scholar
  11. Rowland, M., Benet, L. Z. and Graham, E.G. Clearance concepts in pharmacokinetics. J. Pharmacokin. Biopharm., 1:123–136 (1973).CrossRefGoogle Scholar
  12. Sedman, A. J. and Wagner, J. G. Quantitative pooling of Michaelis-Menten equations in models with parallel metabolite formation paths. J. Pharmacokin. Bio pharm. 2:149–160 (1974).CrossRefGoogle Scholar
  13. Silber, B. M., Holford, N. H. G. and Riegelman, S. Dosedependent elimination of propranolol and its major metabolites in humans. J. Pharm. Sci., 72: 725–732 (1983).PubMedCrossRefGoogle Scholar
  14. Wagner, J. G., Szpunar, G. J. and Ferry, J. J. A nonlinear physiologic pharmaeokinetie model: I. Steady-state. J. Pharmacokin. Biopharm., 13:73–92 (1985a).Google Scholar
  15. Wagner, J. G. Propranolol: Pooled Michaelis-Menten parameters and the effect of input rate on bioavailability. Clin. Pharmacol. Ther., 37:481–487 (1985b).PubMedCrossRefGoogle Scholar
  16. Wagner, J. G. Comparison of nonlinear pharmaeokinetie parameters estimated from the sinusoidal perfusion and venous equilibration models. Biopharm. Drug Dispos., 6:23–31 (l985c).PubMedCrossRefGoogle Scholar
  17. Wagner, J. G., Gyves, J. W., Stetson, P. L., WalkerAndrews, S. C., Wollner, I. S., Cochran, M. K. and Ensminger, W.D. Steady-state nonlinearpharmacokinetics of 5-fluorouracil during hepatic arterial and intravenous infusions in cancer patients. Cancer Res., 46:1499–1506 (1986).PubMedGoogle Scholar
  18. Wagner, J. G., Rogge, M. C., Natale, R. B., Albert, K. S. and Szpunar, G. J. Single dose and steady-state pharmacokinetics of adinazolam after oral administration to man. Biopharm. Drug Dispos., accepted January 7, 1987a.Google Scholar
  19. Wagner, J. G., Ling, T., Mrooszczak, E. J., Freeman, D., Wu, A., Huang, B., Massey, I. T. and Ridge, R. Single intravenous dose and steady-state oral pharmacokinetics of nicardipine in healthy subjects. Biopharm. Drug Dispos., accepted April 17, 1987b.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • John G. Wagner
    • 1
  1. 1.The Upjohn Center for Clinical PharmacologyUniversity of MichiganAnn ArborUSA

Personalised recommendations