Advertisement

Mathematical Foundations of Linear Kinetics

  • Aldo Rescigno
Part of the NATO ASI Series book series (NSSA, volume 145)

Abstract

The following is the summary of a series of lectures I presented for a number of years to graduate students interested in Mathematical Modeling in Biology. The aim of those lectures, as well as the present discussion, is to give investigators an idea of the range of possibilities for more quantitative grounds behind the results of their investigations.

Keywords

Transfer Function Terminal Node Hamiltonian Cycle Real Zero Complex Eigenvalue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.Artom, G.Sarzana and E.Segre, 1938. Influence des grasses alimentaires sur la formation des phospholipides dans les tissues animaux. Arch. Internat. Physiol. 147:245–276.CrossRefGoogle Scholar
  2. J.Beck and A.Rescigno, 1964. Determination of precursor order and particular weighting functions from kinetic data. Jtheoret. Biol. 6:1–12.CrossRefGoogle Scholar
  3. C-Berge, 1958. “Théorie des graphes et ses applications.” Paris, Dunod.Google Scholar
  4. M.Berman, 1972. Iodine Kinetics. In “Methods of investigative and diagnostic endocrinology” (Rall and Kopin editors). Amsterdam, North Holland Publ. Co.Google Scholar
  5. H.Branson, 1946. A mathematical description of metabolizing systems. Bull. Math. Biol. 8:159-165; 9:93–98.Google Scholar
  6. H.Branson, 1947. The use of isotopes to determine the rate of a biochemical reaction. Science 106:404.PubMedCrossRefGoogle Scholar
  7. H.Branson, 1948. The use of isotopes in an integral equation description of metabilizing systems. Cold Spring Harbor Symposium Quant. Biol. 13:35–42.CrossRefGoogle Scholar
  8. H.Branson, 1952. Metabolic pathways from tracer experiments. Arch. Biochem. Biophys. 36:60–70PubMedCrossRefGoogle Scholar
  9. H.Branson, 1963. The integral equation representation of reactions in compartment systems. Ann. N. Y. Acad. Sci108:4–14.PubMedCrossRefGoogle Scholar
  10. G.L.Brownell, M.Berman and J.S.Robertson, 1968. Nomenclatur for tracer kinetics. Int. J. Appl. Rad. Isotopes 19:249–262.CrossRefGoogle Scholar
  11. A.Cayley, 1861. Note on the theory of determinants. Philos. Magazine 21:180–185.Google Scholar
  12. Y.Chow and E.Cassignol, 1962. “Graphs and Applications.” New York, Wiley.Google Scholar
  13. E.Gurpide, 1975. “Tracer Methods in Hormone Research.” Berlin, Springer-Verlag.CrossRefGoogle Scholar
  14. F.Harary, 1959- A graph theoretic method for the complete reduction of a matrix with a view toward finding its eigenvalues. J. Math. Physics 38:104–111.Google Scholar
  15. J.A.Jacquez, 1972. “Compartmental Analysis in Biology and Medicine.” Amsterdam, Elsevier.Google Scholar
  16. G.Kirchhoff, 1847. Ueber die Anfloesung der Gleichungen auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Stroeme gefuehrt wird. Am. Phys. Chem. 72:497–514Google Scholar
  17. R.Laue, 1970. “Elemente der Graphentheorie und ihre Anwendung in den biologischen Wissenschaften.” Leipzig, Geest & Portig.Google Scholar
  18. R.B-Marimont, 1959. A new method for checking the consistency of precedence matrices. J. Assoc. Comp. Machinery6:164–171.CrossRefGoogle Scholar
  19. S.J.Mason, 1953. Feedback theory - some properties of signal flow graphs. Proc. Inst. Radio Eng. 41:1144–1156.Google Scholar
  20. J.H.Matis and H.O.Hartley, 1971. Stochastic compartmental analysis: Model and least square estimation from time series data. Biometrics 27:77–102.CrossRefGoogle Scholar
  21. CM.E.Matthews, 1957. The theory of tracer experiments with 131-I-labelled plasma proteins. Phys.Med.Biol. 2:36–53.PubMedCrossRefGoogle Scholar
  22. J.Mikusinski, 1959. “Operational Calculus.” New York, Pergamon Press.Google Scholar
  23. T-Muir, 1933. “A Treatise on the Theory of Determinants.” London, Longmans, Green &Co.Google Scholar
  24. O.Ore, 1962. “Theory of Graphs.” Providence, Rhode Island, American Mathematical Society.Google Scholar
  25. P.Purdue, 1974. Stochastic theory of compartments. Bull. Math. Biol. 36:305–309 and 577–587.Google Scholar
  26. A-Rescigno, 1960. Synthesis of a multicompartmented biological model. Biochim. Biophys. Acta 37:463–468.CrossRefGoogle Scholar
  27. A.Rescigno, 1973. On transfer times in tracer experiments. J. theoret. Biol. 39:9–27.CrossRefGoogle Scholar
  28. A.Rescigno and J.S.Beck, 1972. Compartments. In“Foundations of Mathematical Biology, ” Vol. 2. (Rosen editor). New York, Academic Press.Google Scholar
  29. A.Rescigno and G.Segre, 1961. The precursor-product relationship. J. theoret. Biol. 1:498–513.Google Scholar
  30. A.Rescigno and G.Segre, 1964. On some topological properties of the systems of compartments. Bull. Math. Biol26:31–38.Google Scholar
  31. A.Rescigno and G.Segre, 1965. On some metric properties of the systems of compartments. Bull. Math. Biol. 27:315–323.Google Scholar
  32. A.Rescigno and G.Segre, 1966. “Drug and Tracer Kinetics.” Waltham, Mass., Blaisdell Publ. Co.Google Scholar
  33. L.P.A.Robichaud, M.Boisvert and J.Robert, 1962. “Signal Flow Graphs and Applications.” Englewood Cliffs, New Jersey, Prentice-Hall.Google Scholar
  34. M.Rowland and G-Tucker, 1980. Symbols in Pharmacokinetics. J. Pharmacokin. Biopharm. 8:497–507.Google Scholar
  35. M.A.Sainte-Laguë, 1926. “Les Réseaux.” Paris, Gauthier-Villard.Google Scholar
  36. C.W.Sheppard, 1948- The theory of the study of transfers within a multi-compartment system using isotopic tracers. J. Appl. Physics 19:70–76.CrossRefGoogle Scholar
  37. J.L.Stephenson, 1960. Theory of transport in linear biological systems. Bull. Math. Biol. 22:1–17 and 113–138.Google Scholar
  38. A.K.Thakur, A.Rescigno and D.E.Schäfer, 1972. On the stochastic theory of compartments: A single compartment system. Bull. Math. Biol. 34:53–63.Google Scholar
  39. A.K.Thakur, A.Rescigno and D.E.Schäfer, 1973. On the stochastic theory of compartments: Multi-compartment systems. Bull. Math. Biol. 35:263–271.PubMedGoogle Scholar
  40. E.C.Titchmarsh, 1926. The zeros of certain integral functions. Proc. London Math. Soc. 25:283–302.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Aldo Rescigno
    • 1
  1. 1.Section of NeurosurgeryYale University School of MedicineNew HavenUSA

Personalised recommendations