Development of Compartmental Concepts

  • Aldo Rescigno
  • Ajit K. Thakur
Part of the NATO ASI Series book series (NSSA, volume 145)


The first compartmental models were used in Physics for the description of radioactive decay. After Becquerel (1896) discovered the radioactivity, Rutherford and Soddy (1902) found experimentally that Thorium X decays in time according to an exponential law, i.e. that the number of radioactive atoms decaying per unit time is proportional to the number of radioactive atoms present. If X(t0) and X(t) are the quantities of radioactive substance present at time to and t respectively, the law of radioactive decay is
$${\rm{dX/dt}}\,{\rm{ = }}\,{\rm{ - }}\,{\rm{K}}{\rm{.X,}}$$
whose integral is
$${\rm{X(t)}}\,{\rm{ = }}\,{\rm{X(}}{{\rm{t}}_{\rm{o}}}{\rm{)}}{\rm{.exp( - K(t - }}{{\rm{t}}_{\rm{o}}}{\rm{))}}{\rm{.}}$$


Compartmental Model Radioactive Decay Liver Lipid Radioactive Substance Compartmental Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. C.Artom, G.Sarzana and E.Segre, 1938- Arch. int. physiol.147:245.Google Scholar
  2. H.Becquerel, 1896. Comptes rendus 122:420– 501.Google Scholar
  3. P.-E.E.Bergner, 1962. Acta Radioloqica Suppl. 210, Stockholm.Google Scholar
  4. M.Berman, 1972. Iodine kinetics. In Methods of investigative and diagnostic endocrinology Rall and Kopin editors). North-Holland, Amsterdam.Google Scholar
  5. G.L.Brownell, M.Berman and J.S.Robertson, 1968. Int. J. Appl. Rad. Isotopes 19:249.CrossRefGoogle Scholar
  6. W.Gehlen, 1933. Arch. exp. pathol. pharmakol. 171:541.CrossRefGoogle Scholar
  7. E.Gurpide, 1975. “Tracer methods in hormone research.” Springer-Verlag, Berlin.CrossRefGoogle Scholar
  8. J.A.Jacquez, 1972.“Compartmental analysis in biology and medicine.” Elsevier, Amsterdam.Google Scholar
  9. J.H.Matis and H.O.Hartley, 1971. Biometrics 27:77.CrossRefGoogle Scholar
  10. P.Purdue, 1974. Bull. Math. Biol. 36:305– 577.Google Scholar
  11. A.Rescigno and J.S.Beck, 1972. Compartments. In;Foundations of Mathematical Biology (R.Rosen editor). Volume 2. Academic Press, New York.Google Scholar
  12. A.Rescigno and G.Segre, 1962.“La cinetica dei farmaci e dei traccianti radioattivi”.’ Boringhieri, Torino. (English translation:“Drug and Tracer Kinetics.” Blaisdell, Waltham, Mass. 1966.)Google Scholar
  13. E.Rutherford, 1904. Royal Soc. London Phil. Trans. A 204:169.CrossRefGoogle Scholar
  14. E.Rutherford and B.A.Soddy, 1902. Phil. Mag. 4:370– 568.CrossRefGoogle Scholar
  15. D.Shemin and D.Rittenberg, 1946. J. Biol. Chem. 166:621.PubMedGoogle Scholar
  16. C.W.Sheppard, 1948. J. Appl. Physics 19:70.CrossRefGoogle Scholar
  17. C.W.Sheppard,and A.S.Householder, 1951. J. Appl. Physics22:510.CrossRefGoogle Scholar
  18. T.Teorell, 1937. Arch. Int. Pharmacodynamie Th é rapie57:205.Google Scholar
  19. A.K.Thakur, A.Rescigno and D.E.Schafer, 1972. Bull. Math. Biol. 34:53.Google Scholar
  20. E.M.P.Widmark, 1920. Acta med. Scand. 52:87.CrossRefGoogle Scholar
  21. E.M.P.Widmark, 1932.Die wissenschaftliche Grundlagen und die praktische Verwendbarkeit der gerichtlich-medizinischen Alkoholbestimmung.’ Urban & Schwarzenberg, Berlin.Google Scholar
  22. E.M.P.Widmark and Tandberg, 1924. Biochem. Z. 147:358Google Scholar
  23. K.Zierler, 1981. Ann. Rev. Biophys. Bioeng. 10:531.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Aldo Rescigno
    • 1
  • Ajit K. Thakur
    • 2
  1. 1.Section of NeurosurgeryYale University School of MedicineNew HavenUSA
  2. 2.Biostatistics DepartmentHazelton Laboratories America, Inc.ViennaUSA

Personalised recommendations