Detection and Quantitation of Eicosanoids by Combined Gas Chromatography-Mass Spectrometry

  • W. C. Hubbard
  • C. L. Litterst
  • M. C. Liu
  • E. R. Bleecker
  • E. G. Mimnaugh
  • J. C. Eggleston
  • T. L. McLemore
  • M. R. Boyd


Mass spectrometry is an indispensable analytical technique in studies of the metabolism of arachidonic acid to prostaglandins, leukotrienes, and other related eicosanoids. In addition to providing qualitative information, mass spectrometry is recognized as the quantitative analytical technique offering the greatest degree of sensitivity, selectivity, precision, and accuracy in the measurement of very small quantities of eicosanoids in biological samples. Recent adaptations, including (a) the use of a capillary gas Chromatograph interface with the mass spectrometer and (b) the use of negative-ion chemical ionization mass spectrometry of electron-capture derivatives of eicosanoids have facilitated the capability to detect 0.2 picograms (approximately 10–12 moles) and less of these compounds in samples of biological origin. The principles and use of combined capillary gas chromatography-mass spectrometry for subpicogram detection and quantitation of eicosanoids of biological origin are presented. Presently, these techniques have permitted the detection and quantitation of prostaglandins D2, E2, F 6-keto-prostaglandin F (6KPGF), and thromboxane B2 and the 15-keto-13, 14-dihydro metabolites of PGE2, PGF, and 6KPGF in biological samples. Also, the use of GC-mass spectrometry for simultaneous determinations of the profile and kinetics of prostaglandin biosynthesis and metabolism in isolated tissues and in cultured cells is featured. The use of alternative interface systems of mass spectrometers as they relate to the chemistry and inherent lability of biologically derived eicosanoids is also addressed.


Arachidonic Acid Metabolite Combine Degree Fast Atom Bombardment Mass Spectrometry Hydroxyl Moiety Quantitative Analytical Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waddell, K. A., Blair, I. A., and Wellby, J. Combined capillary column gas chromatography negative ion chemical ionization mass spectrometry of prostanoids. Biomed. Mass Spectrom. 10: 83–88, 1983.CrossRefGoogle Scholar
  2. 2.
    Waddell, K. A., Robinson, C., Orchard, M. A., Barrow, S. E., Dollery, C. T., and Blair, I. A. Quantitative analysis of arachidonic acid metabolites in complex biological fluids using capillary gas chromatography/negative ion chemical ionization mass spectrometry. Int. J. Mass Spectrom. 48: 233–236, 1983.CrossRefGoogle Scholar
  3. 3.
    Strife, R., and Murphy, R. C. Preparation of pentafluorobenzyl esters of arachidonic acid lipoxygenase metabolites. Analysis by gas chromatography and negative ion chemical ionization mass spectrometry. J. Chromatog. 305: 3–12, 1984.CrossRefGoogle Scholar
  4. 4.
    Strife, R., and Murphy, R. C. Stable isotope labeled 5-lipoxygenase metabolites of arachidonic acid. Analysis by negative ion chemical ionization mass spectrometry. Leukotrienes, Prostaglandins Med. 13: 1–8, 1983.CrossRefGoogle Scholar
  5. 5.
    Waddell, K. A., Barrow, S. E., Robinson, C., Orchard, M. A., Dollery, C. T., and Blair, I. A. Quantitative analysis of prostanoids in biological fluids by chemical gas chromatography negative ion chemical ionization mass spectrometry. Biomed. Mass Spectrom. 11: 68–74, 1984.PubMedCrossRefGoogle Scholar
  6. 6.
    Hubbard, W. C., Litterst, C. L., Liu, M. C., Bleecker, E. R., Mimnaugh, E. G., Eggleston, J. C., McLemore, T. L., and Boyd, M. R. Profiling of prostaglandin biosynthesis in biopsy fragments of human lung carcinoma and normal human lung by combined capillary gas chromatography-negative ion chemical ionization mass spectrometry. Prostaglandins, in press.Google Scholar
  7. 7.
    Murphy, R. C., and Harper, T. W. Mass spectrometry and eicosanoid analysis. In: “Biochemistry of Arachidonic Acid Metabolites.” W. E. M. Lands, ed. Martinus Nijhoff, Boston, 1985, pp. 417–435.CrossRefGoogle Scholar
  8. 8.
    Green, K., Hamberg, M., Samuelsson, B., Smigle, M., and Frolich, J. C. Measurement of prostaglandins, thromboxanes, prostacylin and their metabolites by gas chromatography-mass spectrometry. Adv. Prostaglandin Thromboxane Leukotriene Res. 5: 39–94, 1978.Google Scholar
  9. 9.
    Fischer, C., and Frolich, J. C. Analysis of prostanoids by GC/MS measurement. Adv. Lipid Res. 19: 185–202, 1982.PubMedGoogle Scholar
  10. 10.
    Boeynaems, J. M., and Hubbard, W. C. Preparation, purification, characterization and assay of hydroxy-and hydroperoxy-eicosatetraenoic acids. J. M. Boeynaems and A. G. Herman, eds. In: “Prostaglandin, Prostacyclin and Thromboxane Measurement.” Martinus Nijhoff, Amsterdam, 1980, pp. 167–181.CrossRefGoogle Scholar
  11. 11.
    Hubbard, W. C., Watson, J. T., and Sweetman, B. J. Prostaglandin analysis: Role in high performance liquid chromatography in sample processing. In: “Biological/Biomedical Applications of Liquid Chromatography,” Vol. 10. G. L. Hawk, ed. Marcelle Dekker, New York, 1979, pp. 31–55.Google Scholar
  12. 12.
    Eling, T. E., Tainer, B., Ally, A., and Warnock, R. Separation of arachidonic acid metabolites by high-pressure liquid chromatography. In: “Methods of Enzymology,” Vol. 86. W. E. M. Lands and W. L. Smith, eds. Academic Press, New York, 1982, pp. 511–517.Google Scholar
  13. 13.
    Van Rollins, M., Aveldano, M. I., Sprecher, H. W., and Horrocks, L. A. High pressure liquid chromatography of underivatized fatty acids, hydroxy acids and prostanoids having different chain lengths and double-bond positions. In: Reference 12, pp. 518–530.Google Scholar
  14. 14.
    Salmon, J. A., and Flower, R. A. Extraction and thin-layer chromatography of arachidonic acid metabolites. In: Reference 12, pp. 477–493.Google Scholar
  15. 15.
    Granstrom, E. Two-dimensional thin-layer chromatography of prostaglandins and related compounds. In: Reference 12, pp. 493–511.Google Scholar
  16. 16.
    Freeman, R. R. Instrumental consideration: In: “High Resolution Gas Chromatography.” R. R. Freeman, ed. Hewlett-Packard Co., Palo Alto, CA, 1981, pp. 53–79.Google Scholar
  17. 17.
    Taber, D. F., Phillips, M. A., and Hubbard, W. C. Preparation of deuterated arachidonic acid. Prostaglandins 22: 349–352, 1981.PubMedCrossRefGoogle Scholar
  18. 18.
    Taber, D. F., Phillips, M. A., and Rubbard, W. C. Preparation of deuterated arachidonic acid. In: Reference 12, pp. 366–369.Google Scholar
  19. 19.
    Boeynaems, J. M., Brash, A. R., Oates, J. A., and Hubbard, W. C. Preparation and assay of monohydroxy-eicosatetraenoic acids. Anal. Biochem. 104: 259–267, 1980.PubMedCrossRefGoogle Scholar
  20. 20.
    Turk, J., Henderson, W. R., Klebanoff, S. J., and Hubbard, W. C. Iodination of arachidonic acid mediated by eosinophil peroxidase and lactoperoxidase: Identification and comparison of products. Biochim. Biophys. Acta 751: 189–200, 1983.PubMedGoogle Scholar
  21. 21.
    Bild, G. S., Bhat, S. G., Ramadoss, C. S., and Axelrod, B. Synthesis of 9(12)-oxy-8, ll, 15-trihydroxyeicosa-5, 13-dienoic acid from arachidonic acid by soybean lipoxygenase-2. Biochem. Biophys. Res. Commun. 81: 486–492, 1978.CrossRefGoogle Scholar
  22. 22.
    Murphy, R. C., and Clay, K. L. Preparation of 18O derivatives of eicosanoids for GC-MS quantitative analysis. In: Reference 12, pp. 547–551.Google Scholar
  23. 23.
    Hubbard, W. C., Mimnaugh, E. G., McLemore, T. L., and Boyd, M. R. Determination of the profile and kinetics of prostaglandin biosynthesis in microcarrier-attached human bronchioloalveolar cell lines by capillary gas chromatography-negative ion chemical ionization mass spectrometry. J. Clin. Invest., in preparation.Google Scholar
  24. 24.
    Powell, W. S. Rapid extraction of arachidonic acid metabolites from biological samples using octadecysilyl silica. In: Reference 12, pp. 467–477.Google Scholar
  25. 25.
    Ogletree, J. L., Schlesinger, K., Nettleman, M., and Hubbard, W. C. Measurement of 5-hydroxyeicosatetraenoic acid (5-HETE) in biological fluids by GC-MS. In: Reference 12, pp. 607–612.Google Scholar
  26. 26.
    Samuelsson, B., Borgeat, P., Hammarstrom, S., and Murphy, R. C. Leukotrienes: A new group of biologically active compounds. Adv. Prost. Thrombox. Res. 6: 1–18, 1980.Google Scholar
  27. 27.
    Yergey, J., and Salem, N. Thermospray HPLC-MS of prostaglandins and oxygenated metabolites of arachidonic acid (C20: 4) and docosahexaenoic acid (C22: 6). 32nd Annual Conference on Mass Spectrometry and Allied Topics. San Antonio, Texas, 104–105, 1984.Google Scholar
  28. 28.
    Yergey, J. A., Kim, H.-Y., and Salem, N. High performance liquid chromatography/thermospray mass spectrometry of eicosanoids and novel oxygenated metabolites of docosahexaenoic acid. Analyt. Chem. 58: 1344–1348, 1986.CrossRefGoogle Scholar
  29. 29.
    Murphy, R. C., Mathews, W. R., Rokach, J., and Fenselau, C. Comparison of biologically-derived and synthetic leukotriene C4 by fast atom bombardment mass spectrometry. Prostaglandins 23: 201–206, 1982.PubMedCrossRefGoogle Scholar
  30. 30.
    Taylor, G. W., Morris, H. R., Beaubien, B., and Clinton, P. M. Fast atom bombardment mass spectrometry of eicosanoids. In: “Prostaglandins, Leukotrienes and Other Lipoxygenase Products.” P. Piper, ed. John Wiley, Chichester, 1983, pp. 277–282.Google Scholar
  31. 31.
    Barber, M., Bordeli, R. S., Sedwick, R. D., and Tyler, A. N. Fast atom bombardment of solids as an ion source in mass spectrometry. Nature 293: 270–275, 1981.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • W. C. Hubbard
    • 1
  • C. L. Litterst
    • 1
  • M. C. Liu
    • 2
  • E. R. Bleecker
    • 2
  • E. G. Mimnaugh
    • 1
  • J. C. Eggleston
    • 3
  • T. L. McLemore
    • 1
  • M. R. Boyd
    • 1
  1. 1.Laboratory of Experimental Therapeutics and MetabolismNational Cancer Institute National lnstitutes of HealthBethesdaUSA
  2. 2.Pulmonary Division Francis Scott Key Medical CenterThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of PathologyThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations