Changes in Renal Blood Flow, Glomerular Filtration, and Vasoactive Hormones in Bone-Marrow-Transplant Recipients After Total-Body Irradiation

  • S. C. Textor
  • S. J. Forman
  • R. D. Zipser
  • J. E. Carlson


Although the potential for radiation to produce renal damage at high doses has been well established, there are a few data regarding early functional and hormonal changes in the normal human kidney exposed to “tolerable dose” levels. We measured renal blood flow, glomerular filtration rate (GFR), plasma renin activity, and 6-keto-PGF in patients undergoing fractionated total-body irradiation (1320 rads, 13.2 Gy) prior to allogeneic bone marrow transplantation. Both renal plasma flow and GFR rose (23.8% and 28.4%, respectively), while renal vascular resistance fell. GFR rose to levels well above normal, associated with a fall in serum creatinine. These changes were accompanied by a rise in plasma renin activity and urinary 6-keto-PGF. We propose that irradiation at these doses induces mild renal vascular injury, allowing net vasodilation and hyperfiltration to occur. Such changes represent a hitherto-unrecognized response to whole-body irradiation.


Glomerular Filtration Rate Plasma Renin Activity Renal Blood Flow Allogeneic Bone Marrow Transplantation Urinary Flow Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Luxton, R. W., and Kunkler, P. B. Radiation nephritis. Acta Radiol. Ther. Phys. Biol. 2: 169–177, 1964.Google Scholar
  2. 2.
    Rosen, S., Swerdlow, M. A., Muehrcke, R. C., and Pirani, C. Radiation nephritis: Light and electron microscopic observations. Am. J. Clin. Pathol. 41: 487–502, 1964.PubMedGoogle Scholar
  3. 3.
    White, D. C. The histopathologic basis for functional decrements in late radiation injury in diverse organs. Cancer 37: 1126–1143, 1976.PubMedCrossRefGoogle Scholar
  4. 4.
    Jaenke, R. S., Phemister, R. D., and Norrdin, R. W. Progressive glomerulosclerosis and renal failure following perinatal gamma radiation in the beagle. Lab. Invest. 42: 643–655, 1980.PubMedGoogle Scholar
  5. 5.
    Blake, D. B. Radiobiologic aspects of kidney. Radiol. Clin. North Am. 3: 75–87, 1965.Google Scholar
  6. 6.
    Terragno, N. A., Terragno, A., and McGiff, J. A. Contribution of prostaglandins to the renal circulation in conscious, anesthetized and laparotomized dogs. Circ. Res. 40: 590–595, 1977.PubMedGoogle Scholar
  7. 7.
    Henrich, W. L., Anderson, R. J., and Berenes, A. S. The role of renal nerves and prostaglandins in control of renal hemodynamics and plasma renin activity during hypotensive hemorrhage in the dog. J. Clin. Invest. 61: 744–750, 1978.PubMedCrossRefGoogle Scholar
  8. 8.
    Edwards, R. M. Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles. Am. J. Physiol. 248: F779–784, 1985.PubMedGoogle Scholar
  9. 9.
    Forman, S. J., Spruce, W. E., Farbstein, M. J., et al. Bone marrow ablation followed by allogeneic marrow grafting during first complete remission of acute nonlymphocytic leukemia. Blood 61: 439–442, 1983.PubMedGoogle Scholar
  10. 10.
    Bravo, E. L., Tarazi, R. C., Fouad, F. M., Textor, S. C., Gifford, R. W., and Vidt, D. G. Blood pressure regulation in pheochromocytoma. Hypertension (Supp II) 4(3): II193–II199, 1982.Google Scholar
  11. 11.
    Powell, S. C., Scaro, J., Wilson, E., and Shihabi, Z. K. Assay of urinary n-acetyl-beta-glucosaminidase in a centrifugal analyzer. Clin. Chem. 29: 1717–1719, 1983.PubMedGoogle Scholar
  12. 12.
    Zipser, R. D., Morrison, A., Laffi, J., and Duke, R. Assay methods for 6-keto-prostaglandin-F-1-alpha in human urine: Comparison of chromatographic techniques with radioimmunoassay and gas chromatography-negative-ion-space-chemical-ionization-mass-spectrometry. J. Chromatogr. 339: 1–9, 1985.PubMedCrossRefGoogle Scholar
  13. 13.
    Miller, R. G. “Simultaneous Statistical Inference.” 2nd ed. Springer-Verlag, New York, 1981.CrossRefGoogle Scholar
  14. 14.
    Keane, W. F., Crosson, J. T., Staley, N. A., Anderson, W. R., and Shapiro, F. L. Radiation-induced renal disease. Am. J. Med. 60: 127–137, 1976.PubMedCrossRefGoogle Scholar
  15. 15.
    Scanlon, G. T. Vascular alteration in the irradiated rabbit kidney. Radiology 94: 401–406, 1970.PubMedGoogle Scholar
  16. 16.
    Donlon, M., Steel, L., Helgeson E. A., Shipp, A., and Catravas, G. N. Radiation-induced alterations in prostaglandin excretion in the rat. Life Sci. 32: 2631–2639, 1983.PubMedCrossRefGoogle Scholar
  17. 17.
    Dunn, M. J. Renal prostaglandins. In: “Contemporary Nephrology.” S. Klahr and S. G. Massry, eds. Plenum Press, New York, 1983, pp. 145–191.Google Scholar
  18. 18.
    Belch, J. J., McLaren, M., Anderson, J., Lowe, G. D., Sturrock, R. D., Capell, H. A., Forbes, C. D., Mikhailidis, D. P., Jeremy, J. Y., and Dandona, P. Increased prostacyclin metabolites and decreased red cell deformability in patients with systemic sclerosis and Raynaud’s syndrome. Prostaglandins Leukotrienes Med. 18: 401–402, 1985.CrossRefGoogle Scholar
  19. 19.
    Lifschitz, M. D., and Basrnes, J. L. Prostaglandin 12 attenuates ischemic acute renal failure in the rat. Am. J. Physiol. 247: F714–717, 1984.PubMedGoogle Scholar
  20. 20.
    Davies, D. J., Brewer, D. B., and Hardwicke J. Urinary proteins and glomerular morphometry in protein overload proteinuria. Lab. Invest. 38: 232–243, 1978.PubMedGoogle Scholar
  21. 21.
    Bosh, J. P., Saccaggi, A., Lauer, A., Ronco, C., Belledonne, M., and Glabman, S. Renal functional reserve in humans: Effect of protein intake on glomerular filtration rate. Am. J. Med. 75: 943–950, 1983.CrossRefGoogle Scholar
  22. 22.
    Goodwin, C. W., Aulick, L. H., Becker, R. A., and Wilmore, D. W. Increased renal perfusion and kidney size in convalescent burn patients. JAMA 244: 1588–1590, 1980.PubMedCrossRefGoogle Scholar
  23. 23.
    Mogensen, C. E., and Andersen, M. J. F. Increased kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 22: 706, 1973.PubMedGoogle Scholar
  24. 24.
    Hostetter, T. H. “Diabetic Nephropathy in the Kidney.” B. M. Brenner and F. C. Rector, eds. W. B. Saunders, Philadelphia, 1986, pp. 1377–1402.Google Scholar
  25. 25.
    Lindheimer, M. D., and Katz, A. I. The kidney in pregnancy. In: “The Kidney.” B. M. Brenner and F. C. Rector, eds. W. B. Saunders, Philadelphia, 1986, pp. 1253–1295.Google Scholar
  26. 26.
    Baylis, C. The mechanism of the increase in glomerular filtration rate in the twelve-day pregnant rat. J. Physiol. 305: 405, 1980.PubMedGoogle Scholar
  27. 27.
    Conrad, K. P. Renal hemodynamics during pregnancy in chronically catheterized conscious rats. Kidney Int. 26: 24, 1984.PubMedCrossRefGoogle Scholar
  28. 28.
    Fisher, E. R., and Hellstrom, H. R. Pathogenesis of hypertension and pathologic changes in experimental renal irradiation. Lab. Invest. 19: 530–538, 1968.PubMedGoogle Scholar
  29. 29.
    Ljungqvist, A., Unge, G., Lagergren, C., and Notter, G. The intrarenal vascular alterations in radiation nephritis and their relationship to the development of hypertension. Acta Path. Microbiol. Scand. Section A 79: 629–638, 1971.Google Scholar
  30. 30.
    Textor, S. C., Forman, S. J., Borer, W. Z., and Carlson, J. Sequential blood pressure, hormonal and renal changes during cyclosporine administration in bone marrow transplant recipients with normal renal function. Clin. Res. 34: 487 A, 1986.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. C. Textor
    • 1
  • S. J. Forman
    • 2
  • R. D. Zipser
    • 3
  • J. E. Carlson
    • 1
  1. 1.Department of Consultative Medicine/NephrologyCity of Hope National Medical CenterDuarteUSA
  2. 2.Department of Bone Marrow TransplantationCity of Hope National Medical CenterDuarteUSA
  3. 3.Department of MedicineHarbor-UCLA Medical CenterTorranceUSA

Personalised recommendations