Influence of Membrane Lipid Composition and Organization on Radio-and Thermosensitivity of Bacteria

  • M. B. Yatvin
  • O. Yukawa
  • W. H. Dennis


Numerous investigators have studied and reported on the effects of ionizing radiation on cellular membranes. The effects reported range from inactivation of membrane-bound enzymes to increased ion permeability. This review concerns radiation effects on bacterial membranes and related structures such as “DNA- membrane complexes.” In addition, the relationship of composition and organization of the Escherichia coli membrane to hyperthermic cell killing is considered. In particular, evidence for the role played by fatty acids on the movement of proteins to the outer membrane and the relevance of such protein redistribution on cell survival in heat-stressed cells are discussed.

Bacteria, especially auxotrophs of Escherichia coli, provide powerful tools for study of the role of the membrane in radiation sensitivity (1–5) and hyperthermic sensitivity (6–9). The non-auxotrophic strains most studied by radiobiologists have been the radiation-resistant strain, B/r, and the radiation-sensitive strain, Bs™1. The unsaturated fatty acid-requiring auxotroph, K1060, has provided a cell whose membrane composition can be controlled in a predictable manner. Simply by varying the growth temperature and the unsaturated fatty acid provided during growth, one can control the biophysical properties of the membrane. Such modified cells are important tools for researchers interested in studying the influence of membrane composition on cell killing by radiation and heat.


Membrane Fluidity Membrane Composition Phospholipid Composition Elaidic Acid Osmotic Fragility 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yatvin, M. B. Evidence that survival of gamma-irradiated E. coli is influenced by membrane fluidity. Int. J Radiat. Biol. 30: 571–575, 1976.CrossRefGoogle Scholar
  2. 2.
    Redpath, J. L., and Patterson, L. K. The effect of membrane fatty acid composition on the radiosensitivity of E. coli K1060. Radiat. Res. 75: 443–447, 1978.PubMedCrossRefGoogle Scholar
  3. 3.
    Suzuki, S., and Akamatsu, Y. Involvement of membrane lipids in radiation damage to potassium ion permeability of Escherichia coli. Int. J. Radiat. Biol. 33: 185–190, 1978.CrossRefGoogle Scholar
  4. 4.
    George, A. M., Cramp, W. A., and Yatvin, M. B. The influence of membrane fluidity on radiation-induced changes in the DNA of E. coli K1060. Int. J. Radiat. Biol. 38: 427–438, 1980.CrossRefGoogle Scholar
  5. 5.
    Alper, T., Cramp. W. A., George, A. M., Lunec, J., and Yatvin, M. B. Membrane fluidity and the radiosensitivity of E. coli K1060. Int. J. Radiat. Biol. 40: 211–215, 1981.CrossRefGoogle Scholar
  6. 6.
    Yatvin, M. B. The influence of membrane lipid composition and procaine on hyperthermic death of cells. Int. J. Radiat. Biol. 32: 513–521, 1977.CrossRefGoogle Scholar
  7. 7.
    Dennis, W. H., and Yatvin, M. B. Correlation of hyperthermic sensitivity and membrane microviscosity in E. coli K1060. Int. J. Radiat. Biol. 39: 265–271, 1981.CrossRefGoogle Scholar
  8. 8.
    Yatvin, M. B., Gipp, J. J., Rusy, B. F., and Dennis, W. H. Correlation of bacterial hyperthermic survival with anaesthetic potency. Int. J. Radiat. Biol. 42: 141–149, 1982.CrossRefGoogle Scholar
  9. 9.
    Simone, G., Gipp. J. J., Dennis, W. H., and Yatvin, M. B. Lowered pH eliminates the enhanced hyperthermic killing of E. coli induced by procaine and exposure to N2 gassing. Int. J. Radiat. Biol. 44: 87–95, 1983.CrossRefGoogle Scholar
  10. 10.
    Alper, T., and Gillies, N. E. Restoration of E. coli strain b after irradiation: Its dependence on sub-optimal growth conditions. J. Gen. Microbiol. 18: 461–472, 1958.PubMedGoogle Scholar
  11. 11.
    Alper, T. “Cellular Radiobiology.” Cambridge University Press, New Rochelle, New York, 1979.Google Scholar
  12. 12.
    Alper, T. Lethal mutations and cell death. Phys. Med. Biol. 8: 365–385, 1963.CrossRefGoogle Scholar
  13. 13.
    Watkins, D. K. High oxygen effect for the release of enzymes from isolated mammalian lysosomes after treatment with ionizing radiation. Adv. Biol. Med. Phys. 13: 289–305, 1970.PubMedGoogle Scholar
  14. 14.
    Cramp, W. A., Watkins, D. K., and Collins, J. Effects of ionizing radiation on bacterial DNA membrane complexes. Nature [New Biol.] 235: 76–77, 1972.Google Scholar
  15. 15.
    Yatvin, M. B., Wood, P. G., and Brown, S. M. “Repair” of plasma membrane injury and single strand breaks in gamma-irradiated Escherichia coli B/r and Bs™1. Biochim. Biophys. Acta 287: 390–403, 1972.PubMedGoogle Scholar
  16. 16.
    Jacobson, A. F., and Yatvin, M. B. Changes in phospholipid composition of Escherichia coli following gamma and UV-irradiation. Radiat. Res. 66: 247–266, 1976.PubMedCrossRefGoogle Scholar
  17. 17.
    Yatvin, M. B., Schmitz, B. J., and Dennis, W. H. Radiation killing of E. coli K1060: Role of membrane fluidity, hypothermia and local anesthetics. Int. J. Radiat. Biol. 37: 513–519, 1980.CrossRefGoogle Scholar
  18. 18.
    Burrell, A. D., Feldschreiber, P., and Dean, C. J. DNA-membrane association and the repair of double breaks in X-irradiated Micrococcus radiodurans. Biochim. Biophys. Acta 247: 38–53, 1971.PubMedGoogle Scholar
  19. 19.
    Yatvin, M. B., Gipp, J. J., Werts, E. D., Tamba, M., and Simone, G. Membrane aspects of radiation biology. In: “Oxygen Radicals in Chemistry and Biology.” W. Bors, M. Saran, and D. Tait, eds. Walter de Gruyter and Co., Berlin, 1984, pp. 133–143.Google Scholar
  20. 20.
    Heidelberger, C., Griesbach, L., Montag, B. J., Mooren, D., Cruz. O., Schnitzer, R. J., and Grunberg, E. Studies on fluorinated pyrimidines. II. Effects on transplanted tumors. Cancer Res. 18: 305–317, 1958.Google Scholar
  21. 21.
    Djordjevic, B., and Szybalski, W. Genetics of human cell lines. III. Incorporation of 5-bromo and 5-iododeoxyuridine into deoxyribonucleic acid of human cells and its effects on radiation sensitivity. J. Exp. Med. 12: 509–531, 1960.Google Scholar
  22. 22.
    Yatvin, M. B., Gipp, J. J., Klessig, D. R., and Dennis, W. H. Hyperthermic sensitivity and growth stage in Escherichia coli. Radiat. Res. 160: 78–88, 1986.CrossRefGoogle Scholar
  23. 23.
    Ginsberg, D. M., and Webster, H. K. Chemical protection against single strand breaks in DNA of gamma-irradiated E. coli. Radiat. Res. 39: 421–435, 1969.PubMedCrossRefGoogle Scholar
  24. 24.
    Gentner, N. E., and Mitchel, R. E. J. Ionizing radiation-induced release of a cell surface nuclease from Micrococcus radiodurans. Radiat. Res. 61: 204–215, 1975.PubMedCrossRefGoogle Scholar
  25. 25.
    Mitchel, R. E. J. Ionizing radiation damage in Micrococcus radiodurans cell wall: Release of polysaccharide. Radiat. Res. 66: 158–169, 1976.PubMedCrossRefGoogle Scholar
  26. 26.
    Gillies, N. E., Obioha, F. I., and Ratnajothi, N. H. An oxygen dependent x-ray lesion in Escherichia coli strain B/r detected by penicillin. Int. J. Radiat. Biol. 36: 587–594, 1979.CrossRefGoogle Scholar
  27. 27.
    Gillies, N. E., and Ratnajothi, N. H. Introduction of resistance to x-rays in E. coli by toluene. Int. J. Radiat. Biol 38: 193–198, 1980.CrossRefGoogle Scholar
  28. 28.
    Yatvin, M. B., Gipp, J. J., and Dennis, W. H. Influence of unsaturated fatty acids, membrane fluidity and oxygenation on survival of an E. coli fatty acid auxotroph following gamma-irradiation. Int. J. Radiat. Biol. 35: 539–548, 1979.CrossRefGoogle Scholar
  29. 29.
    Shechter, E., Letellier, L., and Gulik-Krywicki, L. E. Relationship between structure and function in cytoplasmic membrane vesicles isolated from an Escherichia coli fatty-acid auxotroph. Eur. J. Biochem. 49: 61–76, 1974.PubMedCrossRefGoogle Scholar
  30. 30.
    Yonei, S., Malsutani, C. Y., Todo, T., and Niwa, O. Modification of radiosensitivity of bacterial and mammalian cells by membrane-specific drugs. In: “Modification of Radiosensitivity in Cancer Treatment.” Academic Press Japan, Inc., 1984, pp. 291–311.Google Scholar
  31. 31.
    Shenoy, M. A., and Singh, B. B. Non-nitro radiation sensitizers. Int. J. Radiat. Biol. 48: 315–326, 1985.CrossRefGoogle Scholar
  32. 32.
    Edwards, J. C., Chapman, D., and Cramp, W. A. Radiation studies of Acholeplasma laidlawii: The role of membrane composition. Int. J. Radiat. Biol. 44: 405–412, 1983.CrossRefGoogle Scholar
  33. 33.
    Konings, A. W. T., Gipp, J. J., and Yatvin, M. B. Radio-and thermosensitivity of E. coli K1060 after thiol depletion by diethylmaleate. Radiat. Environ. Biophys. 23: 245–253, 1984.PubMedCrossRefGoogle Scholar
  34. 34.
    Yatvin, M. B. Influence of membrane lipid composition on translocation of nascent proteins in heated Escherichia coli. Biochim. Biophys. Acta 901: 147–156, 1987.PubMedCrossRefGoogle Scholar
  35. 35.
    Yatvin, M. B., Smith, K. M., and Siegel, F. L. Translocation of nascent non-signal sequence proteins in heated Escherichia coli. J. Biol. Chem. 261: 8070–8075, 1986.PubMedGoogle Scholar
  36. 36.
    Yatvin, M. B., Clark, A. W., and Siegel, F. L. Major heat-stress proteins do not translocate: Implications for cell survival. Int. J. Radiat. Biol., in press.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • M. B. Yatvin
    • 1
  • O. Yukawa
    • 2
  • W. H. Dennis
    • 3
  1. 1.Departments of Human Oncology, RadiologyUniversity of WisconsinMadisonUSA
  2. 2.Division of BiologyNational Institute of Radiological SciencesAnagawaJapan
  3. 3.Department of PhysiologyUniversity of WisconsinMadisonUSA

Personalised recommendations