Advertisement

Effects of Neutron Irradiation on PGE2 and TxB2 Levels in Biological Fluids: Modification by WR-2721

  • L. K. Steel
  • G. D. Ledney

Abstract

Whole-body fission neutron irradiation of mice results in changes in plasma and urinary prostaglandin levels. No relationship was found between urinary TxB2 excretion and the neutron dose. Elevated plasma PGE2 at 2–4 days postexposure coincides with increased PGE2 in the urine. A second increase in urinary PGE2 occurred 6–10 days postirradiation, and was dose dependent up to 3.85 Gy. Plasma PGE2 levels at this time were normal. WR-2721 administration markedly increased (24 hr) and then reduced (2–4 days) PGE2 excretion in nonirradiated animals. The urinary PGE2 of WR-2721-pretreated, irradiated mice paralleled those of drugtreated, nonirradiated animals for the first 5 days. However, WR-2721 injection did not modify the elevation of PGE2 occurring 6–10 days postexposure. Urinary TxB2 from nonirradiated groups was not altered by WR-2721, but the combination of drug and radiation resulted in increased levels 1–7 days postexposure. These results further implicate prostaglandins in the biological response to radiation exposure and suggest another mechanism of WR-2721 radioprotection.

Keywords

PGE2 Level Fission Neutron Prostaglandin Release TxB2 Level Urinary PGE2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steel, L. K., Rafferty, M. A., Wolfe, W. W., Egan, J. E., Kennedy, D. A., Catravas, G. N., Jackson, W. E., III, and Dooley, M. A. Urinary excretion of cyclic nucleotides, creatinine, prostaglandin E2 and thromboxane B2 from mice exposed to whole-body irradiation from an enhanced neutron field. Int. J. Radiat. Biol. 50: 695–715, 1986.CrossRefGoogle Scholar
  2. 2.
    Polgar, P., Hahn, G., and Taylor, L. Radiation effects on eicosanoid formation. In: “Biochemistry of Arachidonic Acid Metabolism.” W. E. M. Lands, ed. Martin Nijhoff Publishing, Boston, 1985, pp. 161–173.CrossRefGoogle Scholar
  3. 3.
    Stewart, D. A., Ledney, G. D., Baker, W. H., Daxon, E. G., and Sheehy, P. A. Bone marrow transplantation of mice exposed to a modified fission neutron (N/G-30:l) field. Radiat. Res. 92: 268–279, 1982.PubMedCrossRefGoogle Scholar
  4. 4.
    Zeman, G. H., and Ferlic, K. P. Paired ion chamber constants for fission gammaneutron fields. Technical Report TR84-8. Armed Forces Radiobiology Research Institute, Bethesda, Maryland, 1984.Google Scholar
  5. 5.
    Steel, L. K., and Catravas, G. N. Radiation-induced changes in production of prostaglandins F, E, and TxB2 in guinea pig parenchymal lung tissues. Int. J. Radiat. Biol. 42: 517–530, 1982.CrossRefGoogle Scholar
  6. 6.
    Steel, L. K., Sweedier, I. K., and Catravas, G. N. Effects of 60Co radiation on synthesis of prostaglandins F, E and thromboxane B2 in lung airways of guinea pigs. Radiat. Res. 94: 156–165, 1983.PubMedCrossRefGoogle Scholar
  7. 7.
    Ledney, G. D., Steel, L. K., Exum, E. D., and Gelston, H. M. Pathophysiologic responses in mice after neutron irradiation combined with either wound or burn trauma. In: “The Pathophysiology of Combined Injury and Trauma: Management of Infectious Complications in Mass Casualty Situations.” D. Gruber, R. I. Walker, T. J. MacVittie, and J. J. Conklin, eds. Academic Press, Inc., Orlando, Florida, 1987.Google Scholar
  8. 8.
    El-Bayer, H., Steel, L., Montcalm, E., Danquechin-Dorval, E., Dubois, A., and Shea-Donohue, T. The role of endogenous prostaglandins in the regulation of gastric secretion in Rhesus monkeys. Prostaglandins 30: 401–419, 1985.CrossRefGoogle Scholar
  9. 9.
    Snedecor, G. W., and Cochran, W. G. The comparison of two samples. In: “Statistical Methods.” Iowa State University Press, Ames, Iowa, 1980, pp. 85–86.Google Scholar
  10. 10.
    Finney, D. J. In: “Statistical Method in Biological Assay.” Third Edition. Macmillan Publishing Co., Inc., New York, 1978, pp. 349–390.Google Scholar
  11. 11.
    Conover, W. J. In: “Practical Nonparametric Statistics.” Second Edition. John Wiley and Sons, Inc., New York, 1980, pp. 144–151.Google Scholar
  12. 12.
    Snedecor, G. W., and Cochran, W. G. Analysis of variance. In: “Statistical Methods.” Iowa State University Press, Ames, Iowa, 1980, pp. 235–237.Google Scholar
  13. 13.
    Frölich, J. C., Wilson, T. W., Sweetman, B., Smigel, M., Nies, A. S., Carr, K., Watson, J. T., and Oates, J. A. Urinary prostaglandins. Identification and origin. J. Clin. Invest. 55: 763–770, 1975.PubMedCrossRefGoogle Scholar
  14. 14.
    Tanner, N. S. B., Stamford, I. F., and Bennett, A. Plasma prostaglandins in mucositis due to radiotherapy and chemotherapy for head and neck cancer. Brit. J. Cancer 43: 767–771, 1981.PubMedCrossRefGoogle Scholar
  15. 15.
    Eisen, V., and Walker, D. I. Effect of ionizing radiation on prostaglandinlike activity in tissues. Br. J. Pharmacol. 57: 527–532, 1976.PubMedGoogle Scholar
  16. 16.
    Trocha, P. J., and Catravas, G. N. Prostaglandin levels and lysosomal activities in irradiated rats. Int. J. Radiat. Biol. 38: 503–522, 1980.CrossRefGoogle Scholar
  17. 17.
    Päusescu, E., Chirvasie, R., Teodosiu, T., and Päun, C. Effect of 60Co γ-radiation on the hepatic and cerebral levels of some prostaglandins. Radiat. Res. 65: 163–171,1976.PubMedCrossRefGoogle Scholar
  18. 18.
    Donlon, M., Steel, L., Helgeson, E. A., Shipp, A., and Catravas, G. N. Radiation-induced alterations in prostaglandin excretion in the rat. Life Sci. 32: 2631–2639, 1983.PubMedCrossRefGoogle Scholar
  19. 19.
    Schneidkraut, M. J., Kot, P. A., Ramwell, P. W., and Rose, J. C. Urinary prostacyclin and thromboxane levels after whole-body gamma irradiation in the rat. Adv. in Prostaglandin, Thromboxane, and Leukotriene Res. 12: 107–112, 1983.Google Scholar
  20. 20.
    Trocha, P. J., and Catravas, G. N. Effects of WR-2721 on cyclic nucleotides, prostaglandins and liposomes. Radiat. Res. 94: 239–251, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Donlon, M. A., Steel, L. K., Helgeson, E. A., Wolfe, W. W., and Catravas, G. N. WR-2721 inhibition of radiation-induced prostaglandin excretion in rats. Int. J. Radiat. Res. 47: 205–212, 1985.Google Scholar
  22. 22.
    Pryanishnikova, E. N., Zhulanova, Z. I., and Romantsev, E. F. Effect of S-[N-(3)aminopropyl)-2-aminoethyl]thiophosphoric acid on prostaglandin synthetase activity in mouse tissues (in Russian). Vopr. Med. Khim. 26: 685–688, 1980.Google Scholar
  23. 23.
    Dubois, L. A., Dorvall, E. D., Steel, L., O’Connell, L., and Durakovic, A. Do prostaglandins mediate radiation-induced suppression of gastric acid output? 33rd Annual Meeting of Radiation Research Society, Los Angeles, CA. May 5–9, 1985. Abstr. Jf-4, p. 133.Google Scholar
  24. 24.
    Lifshitz, S., Savage, J. E., Taylor, K. A., Tewfik, H. H., and VanOrden, D. E. Plasma prostaglandin levels in radiation-induced enteritis. Int. J. Radiat. Oncol. Biol. Phys. 8: 275–277, 1982.PubMedCrossRefGoogle Scholar
  25. 25.
    Jaffe, B. M., Behrman, H. R., and Parker, C. W. Radioimmunoassay measurement of Prostaglandins E, A and F in human plasma. J. Clin. Invest. 52: 398–405, 1972.CrossRefGoogle Scholar
  26. 26.
    Utley, J. F., Marlowe, C., and Waddell, W. J. Distribution of 35S-labeled WR-2721 in normal and malignant tissues of the mouse. Radiat. Res. 68: 284–291, 1976.PubMedCrossRefGoogle Scholar
  27. 27.
    Rasey, J. S., Nelson, N. J., Mahler, P., Anderson, K., Krohn, K. A., and Menard, T. Radioprotection of normal tissues against gamma rays and cyclotron neutrons with WR-2721: LD50 studies and 35S-WR-2721 biodistribution. Radiat. Res. 68: 284–291, 1976.CrossRefGoogle Scholar
  28. 28.
    Kligerman, M. M., Glover, D. J., Turrisi, A. T., Norfleet, A. L., Yuhas, J. M., Coia, L. R., Simone, C., Glick, J. H., and Goodman, R. L. Toxicity of WR-2721 administered in single and multiple doses. Int. J. Radiat. Oncol. Biol. Phys. 10: 1733–1776, 1984.Google Scholar
  29. 29.
    Hanson, W. R., and Thomas, C. 16, 16-dimethyl prostaglandin E2 increases survival of murine intestinal stem cells when given before photon radiation. Radiat. Res. 96: 393–398, 1983.PubMedCrossRefGoogle Scholar
  30. 30.
    Waiden, T. L., Snyder, S. L., Patchen, M. L., and Steel, L. K. Enhanced LD 50/30 survival in mice by 16, 16 dimethyl prostaglandin E2. 34th Annual Meeting of Radiation Research Society, Las Vegas, Nevada, April 12–17, 1986. Abstract C1-11, p. 41.Google Scholar
  31. 31.
    Mennie, A. T., Dalley, V. M., Dinneen, L. C., and Collier, H. O. J. Treatment of radiation-induced gastrointestinal distress with acetylsalicylate. Lancet 2: 942–943, 1975.Google Scholar
  32. 32.
    Granström, E., Diczfalusy, U., and Hamberg, M. The thromboxanes. In: “Prostaglandins and Related Substances.” C. Pace-Asciak and E. Granström, eds. Elsevier Science Publishers, Amsterdam, The Netherlands, 1983, pp. 45–93.CrossRefGoogle Scholar
  33. 33.
    Granger, D. N., and Parks, D. A. Role of oxygen radicals in the pathogenesis of intestinal ischemia. Physiologist 26: 159–164, 1983.PubMedGoogle Scholar
  34. 34.
    Taylor, L., and Polgar, P. Stimulation of prostaglandin synthesis by ascorbic acid via hydrogen peroxide formation. Prostaglandins 19: 693–700, 1980.PubMedCrossRefGoogle Scholar
  35. 35.
    Taylor, L., Menconi, M. J., and Polgar, P. The participation of hydroperoxides and oxygen radicals in the control of prostaglandin synthesis. J. Biol. Chem. 258: 6855–6857, 1983.PubMedGoogle Scholar
  36. 36.
    Seregi, A., Serfozo, P., and Mergl, Z. Evidence for the localization of hydrogen peroxide-stimulated cyclooxygenase activity in rat brain mitochondria: A possible coupling with monoamine oxidase. J. Neurochem. 40: 407–413, 1983.PubMedCrossRefGoogle Scholar
  37. 37.
    Hemler, M. E., Cook, H. W., and Lands, W. E. M. Prostaglandin biosynthesis can be triggered by lipid peroxides. Arch. Biochem. Biophys. 193: 340–345, 1979.PubMedCrossRefGoogle Scholar
  38. 38.
    Egan, R. W., Paxton, J., and Kuehl, F. A., Jr. Mechanism for irreversible self-destruction of prostaglandin synthetase. J. Biol. Chem. 251: 7329–7335, 1976.PubMedGoogle Scholar
  39. 39.
    Steel, L. K., Jacobs, A. J., Giambarresi, L. I., and Jackson, W. E., III. Protection of mice against fission neutron irradiation by WR-2721 or WR-151327. Radiat. Res. 109: 469–478, 1987.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • L. K. Steel
    • 1
  • G. D. Ledney
    • 2
  1. 1.Department of Radiation BiochemistryArmed Forces Radiobiology Research InstituteBethesdaUSA
  2. 2.Department of Experimental HematologyArmed Forces Radiobiology Research InstituteBethesdaUSA

Personalised recommendations