Thermal Injury Causes Stimulation of Phospholipase A2 Activity in Mammalian Cells

  • S. K. Calderwood
  • E. K. Farnum
  • M. A. Stevenson


Heat stress (43°C, 45°C) stimulated phopholipase A2 activity in the two mammalian cell lines investigated: HA-1 hamster fibroblasts and PC-12 rat pheochromocytoma cells. The resultant arachidonic acid (AA) release was of a similar order to that induced by thrombin and bradykinin. Dexamethasone (5 x 10 − 8 M) inhibited by 80%–90% the effect of heat stress on AA release. Heat-induced stimulation of phospholipase A2 activity may be involved both in the direct cytotoxic effects of heat stress and in the inflammatory responses induced by thermal injury.


Arachidonic Acid Heat Stress Thermal Injury PLA2 Activity Arachidonic Acid Release 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hahn, G. M. “Hyperthermia and Cancer.” Plenum Press, New York, 1982.Google Scholar
  2. 2.
    Hong, S. L., and Deykin, D. The activation of phosphatidyl inositol hydrolyzing phospholipase A2 during prostaglandin synthesis in transformed mouse Balb-C 3T3 cells. J. Biol. Chem. 256: 5215–5219, 1981.PubMedGoogle Scholar
  3. 3.
    Johnson, M., Carey, F., and McMillen, R. M. Alternative pathways of arachidonate metabolism: Prostaglandins, thromboxanes, and leukatrienes. Essays Biochem. 15: 40–139, 1983.Google Scholar
  4. 4.
    Calderwood, S. K., Stevenson, M. A., and Hahn, G. M. Heat stress stimulates inositol trisphosphate release and phosphorylation of phosphoinositides in CHO and Balb-C 3T3 cells. J. Cell Physiol. (in press).Google Scholar
  5. 5.
    Movat, H. Z., ed. The acute inflammatory reaction. In: “Inflammation, Immunity, and Hypersensitivity.” Harper and Row, New York, 1979, pp. 1–162.Google Scholar
  6. 6.
    Stevenson, M. A., Calderwood, S. K., and Hahn, G. M. Rapid increases in inositol trisphosphate and intracellular Ca2+ after heat shock. Biochem. Biophys. Res. Commun. 137: 826–833, 1986.PubMedCrossRefGoogle Scholar
  7. 7.
    Hidaka, H., Sasaki, Y., Tamaka, T., Toyoshi, E., Fujii, Y., and Nagato, T. N-(6-amino hexyl)-5-chloro-l-napthalenesulphonamide, a calmodulin antagonist, inhibits cell proliferation. Proc. Natl. Acad. Sci. USA 78: 4354–4357, 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    Fisher, G. A., Anderson, R. L., and Hahn, G. M. Glucocorticoid-induced heat resistance in mammalian cells. J. Cell Physiol. 128: 127–132, 1986.PubMedCrossRefGoogle Scholar
  9. 9.
    Dickson, J. A., and Calderwood, S. K. Thermosensitivity of neoplastic tissues in vivo. In: “Hyperthermia in Cancer Therapy.” F. K. Storm, ed. G. K. Hall, Boston, 1983, pp. 63–140.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • S. K. Calderwood
    • 1
  • E. K. Farnum
    • 1
    • 2
  • M. A. Stevenson
    • 1
    • 3
  1. 1.Joint Center for Radiation TherapyHarvard Medical SchoolBostonUSA
  2. 2.George Washington University Medical SchoolWashingtonUSA
  3. 3.Department of MedicineMassachussetts General HospitalBostonUSA

Personalised recommendations