Possible Involvement of Queuine in Oxidative Metabolism

  • L. Szabo
  • W. R. Farkas


The possibility that the base queuine (Q) or tRNA’s containing Q may play a role in controlling oxidative metabolism has been investigated. There was less thiobarbituric acid-reactive material in queuine-deficient (Q-) mouse liver and kidney than in (Q+) liver and kidney. (Q−) LM cells grown in culture had 53% less of the mitochondrial superoxide dismutase than did (Q+) cells. The enzymatic insertion of queuine into tRNA requires oxygen.


Oxidative Metabolism Oxygen Metabolism Mitochondrial Superoxide Conventional Mouse Mitochondrial Super Oxide Dismutase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kasai, H., Ohashi, Z., Harada, F., Nishimura, S., Oppenheimer, N. J., Crain, P. F., Liehr, J. G., Von Minden, D. L., and McCloskey, J. A. Biochem. 14: 4198–4208, 1975.CrossRefGoogle Scholar
  2. 2.
    Kasai, H., Nakanishi, K., MacFarlane, R. D., Tongerson, D. F., Ohashi, Z., McCloskey, J. A., Gross, H. J., and Nishimura, S. J. Am. Chem. Soc. 98: 5044–5046, 1976.CrossRefGoogle Scholar
  3. 3.
    Katze, J. R. Nucleic Acids Res. 5: 2513–2522, 1978.PubMedCrossRefGoogle Scholar
  4. 4.
    Farkas, W. R. J. Biol. Chem. 255: 6832–6835, 1980.Google Scholar
  5. 5.
    Katze, J. R., and Farkas, W. R. Proc. Nat. Acad. Sci. (U.S.A.) 76: 3271–3275, 1979.PubMedCrossRefGoogle Scholar
  6. 6.
    Okada, N. S., Okada, N., Ohgi, T., Goto, T., and Nishimura, S. Biochem. 19: 395–400, 1980.CrossRefGoogle Scholar
  7. 7.
    Bochner, B. R., Lee, P. C., Wilson, S. W., Cutler, C. W., and Ames, B. N. Cell 37: 225–232, 1984.PubMedCrossRefGoogle Scholar
  8. 8.
    Janel, G., Michelsen, U., Nishimura, S., and Kersten, H. EMBO Journal 3: 1603–1608, 1984.PubMedGoogle Scholar
  9. 9.
    Reyniers, J. P., Pleasants, J. R., Wostmann, B. S., Katze, J. R., and Farkas, W. R. J. Biol. Chem. 256: 11591–11594, 1981.Google Scholar
  10. 10.
    Pleasants, J. R., Reddy, B. S., and Wostman, B. S. J. Nutr. 100: 498–508, 1970.PubMedGoogle Scholar
  11. 11.
    Reyniers, J. P., and Farkas, W. R. Anal. Biochem. 130: 427–430, 1983.Google Scholar
  12. 12.
    Katze, J. R., Gunduz, U., Smith, D. L., Cheng, C. S., and McCloskey, J. A. Biochem. 23: 1171–1176, 1984.CrossRefGoogle Scholar
  13. 13.
    Howes, M. K., and Farkas, W. R. J. Biol. Chem. 253: 9082–9087, 1978.Google Scholar
  14. 14.
    Misra, H. P., and Fridovich, I. J. Biol. Chem. 247: 3170–3175, 1972.Google Scholar
  15. 15.
    Matkovics, B., Novak, R., Hoang Duc Hanh, Szabo, L., Vanga, Sz. I., and Zolesna, G. Comp. Biochem. Physiol. 56B: 31–34, 1977.Google Scholar
  16. 16.
    Beers, R. F., Jr., and Sizer, I. W. J. Biol. Chem. 195: 133–140, 1952.Google Scholar
  17. 17.
    Chiu, D. T. Y., Stults, F. H., and Tappal, A. L. Biochem. et Biophys. Acta 445: 558–566, 1976.Google Scholar
  18. 18.
    Sedlack, I., and Lindsay, R. H. Analyt. Biochem. 25: 192–205, 1968.Google Scholar
  19. 19.
    Placer, Z. A., Chusham, L., and Johnson, B. C. Analyt. Biochem. 16: 359–364, 1966.Google Scholar
  20. 20.
    Patton, S., and Kurtz, G. J. Dairy Sci. 34: 669–674, 1951.CrossRefGoogle Scholar
  21. 21.
    Greim, H. Naunyn-Schmiedebergs Arch. Exp. Path. Pharmak. 266: 261–275, 1970.Google Scholar
  22. 22.
    Bradford, M. M. Anal. Biochem. 72: 248–254, 1976.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • L. Szabo
    • 1
  • W. R. Farkas
    • 1
  1. 1.College of Veterinary Medicine and The Program in Environmental ToxicologyUniversity of TennesseeKnoxvilleUSA

Personalised recommendations