Aluminum an Uremic Toxin

  • Patrick C. D’Haese
  • Frank L. Van de Vyver
  • Ludwig V. Lamberts
  • Marc E. De Broe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 223)

Abstract

Aluminum has historically been regarded as non essential, since up to now no physiological function could be ascribed to it. Environmental exposure to aluminum is virtually universal as aluminum constitutes a substantial part of the earth’s crust (8%) and is found in food, medicine and cosmetics. Besides this aluminum has a lot of industrial applications. Until recently, aluminum was generally considered to be a relatively nontoxic metal, which is reflected by the scarce and often wrong information presented in the literature dealing with the toxicology of trace elements. However, since it was found that aluminum is the causative factor in some dialysis-related diseases, the issue of the origin and physio-pathology of aluminum accumulation-toxicity in these patients has received the interest it deserves.

Keywords

Uremic Toxin Aluminum Level Serum Aluminum Aluminum Accumulation Dialysis Encephalopathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.L. Van de Vyver, A.B. Bekaert, P.C. D’Haese, H. Kellinghaus, U. Graefe and M.E. De Broe, Serum, blood, bone and liver aluminium levels in chronic renal failure. Trace Elem. Med. 3:52 (1986).Google Scholar
  2. 2.
    P.O. Ganrot, Metabolism and possible health effects of aluminum, Env. Hlth. Med. 3: 52 (1986).Google Scholar
  3. 3.
    W.D. Kaehny, A.P. Hegg, and A.C. Alfrey, Gastrointestinal absorption of aluminum from aluminum-containing antacids. New Engl. J. Med. 296:1389 (1977).PubMedCrossRefGoogle Scholar
  4. 4.
    S.W. King, M.R. Wills, and J. Savory, Serum binding of aluminum. Res. Comm. Chem. Pathol. & Pharmacol. 26:161 (1979).Google Scholar
  5. 5.
    G.A. Trap, Plasma aluminum is bound to transferrin. Life Sci. 33:311 (1983).CrossRefGoogle Scholar
  6. 6.
    F.L. Van de Vyver, J.P. Van Waeleghem, M.E. De Broe, P.C. D’Haese, and A. Heyndrickx, Water treatment and dialysis dementia. Lancet 4: 1106 (1982).CrossRefGoogle Scholar
  7. 7.
    F.L. Van de Vyver, F.J. E Silva, P.C. D’Haese, A.H. Verbueken, and M.E. De Broe, Aluminum toxicity in dialysis natients, Contr. Nephrol. 55:198 (1986).Google Scholar
  8. 8.
    A.C. Alfrey, Gastrointestinal absorption of aluminium, Clin. Nephrol. 24:84 (1985).Google Scholar
  9. 9.
    A.M. Roodhooft, F.L. Van de Vyver, P.C. D’Haese, K. Van Acker, W.J. Visser, and M.E. De Broe, Aluminum accumulation in children on chronic dialysis: predictive value of serum aluminum levels and desferrioxamine infusion test, Clin. Nephrol. (1986, submitted).Google Scholar
  10. 10.
    H.R. Skalsky, and R.A. Carchman, Aluminium homeostasis in man, J. Am.Coll. of Toxicol. 2:405 (1983).CrossRefGoogle Scholar
  11. 11.
    A. Andersen, B.E. Dahlberg, K. Magnus, and A. Wannag, Risk of cancer in the Norwegian aluminum industry. Int. J. Cancer 29:295 (1982).PubMedCrossRefGoogle Scholar
  12. 12.
    T. Drueke, and G. Coumot-Witmer, Dialysis osteomalacia: clinical aspects and physiopathological mechanisms, Clin. Nephrol. 24:26 (1985).Google Scholar
  13. 13.
    A.C. Alfrey, Dialysis encephalopathy, Clin. Nephrol. 24:15 (1985).Google Scholar
  14. 14.
    M. Touam, F. Martinez, B. Lacour, R. Bourdon, J. Zingraff, S. Di Giulio, and T. Drueke, Aluminum-induced, reversible microcytic anemia in chronic renal failure: clinical and experimental studies, Clin. Nephrol. 19:295 (1983).PubMedGoogle Scholar
  15. 15.
    M.E. De Broe, P.C. D’Haese, and F.L. Van de Vyver, Aluminum toxicity, in: “Handbook of Dialysis, ” T.S. Ing and T.S. Daugirdas, eds., Little Brown & Co (1987, in press).Google Scholar
  16. 16.
    A.H. Verbueken, F.L. Van de Vyver, W.J. Visser, R.E. Van Grieken, and M.E. De Broe, Laser microprobe mass analysis (LAMMA) to verify the aluminon staining of bone. Stain Technol. 61:287 (1986).PubMedGoogle Scholar
  17. 17.
    A.H. Verbueken, F.L. Van de Vyver, W.J. Visser, F. Roels, R.E. Van Grieken and M.E. De Broe, Use of laser microprobe mass analysis (LAMMA) for localizing multiple elements in soft and hard tissues, Biol. Trace Elem. Res. (1986, in press).Google Scholar
  18. 19.
    A. Fournier, P. Fohrer, P. Leflon, P. Moriniere, M. Tolani, G. Lambrey, R. Demontis, J.L. Sebert, F.L. Van de Vyver, and M.E. De Broe, The desferrioxamine test predicts bone aluminum burden induced by A1(OH)3 in uraemic patients but not mild histological osteomalacia, in: “Proc. EDTA-ERA, ” A.M. Davison, ed., Pitman Med., London, 21:371 (1984).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Patrick C. D’Haese
    • 1
  • Frank L. Van de Vyver
    • 1
  • Ludwig V. Lamberts
    • 1
  • Marc E. De Broe
    • 1
  1. 1.Dept. of Nephrology-HypertensionUniversity of Antwerp, University Hospital AntwerpEdegem (Antwerpen)Belgium

Personalised recommendations