Trinitrophenyl Reactive T-Cell Clones in Functional and Molecular Analysis of the HLA-D Region

  • Robert R. Rich
  • Jeffrey H. Hanke
  • Richard G. Cook
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 225)


A central role for major histocompatibility complex (MHC) molecules in presentation of non-MHC antigens to T lymphocytes is generally acknowledged. Among the seminal studies demonstrating this phenomenon were those of Shearer and associates demonstrating that recognition of mouse target cells by trinitrophenyl (TNP)-specific cytolytic T cells required genetic homologies between the killer and target cells at H-2 class I loci (rev., Shearer et al., 1976). This system, employing target cells surface modified by hapten conjugation, has proven particularly useful in subsequent studies of MHC restrictions on antigen recognition by human T lymphocytes. As in the mouse, recognition of TNP-modified target cells by hapten-specific cytotoxic T lymphocytes has appeared to involve restrictions for class I HLA homology (Shaw and Shearer, 1978). The data in human systems have been substantially less compelling, however, with evidence in some instances for effective interactions between target and killer cells that did not involve obvious class I HLA homologies (Shaw and Shearer, 1978; Seldin et al., 1979). In contrast to target cell recognition by cytolytic T-cells, recognition of antigen by helper T-cells has generally required genetic homology between antigen-presenting cells and helper T cells (or B cells and helper T cells) for class II loci of the MHC (rev., Thomas et al., 1977). Subsequently, clear exceptions have been documented with respect to correlations between functional activity and MHC restrictions for antigen recognition (rev., Rich et al., 1986). On the other hand, identification of a dichotomy of T lymphocytes, one subset of which expresses the CD4 molecule (L3T4 in mice) and the other of which expresses the CD8 molecule (Ly2 in mice), has led to a more convincing correlation between T-cell subset and MHC recognition requirements in antigen presentation. That is, recognition of non-MHC antigens by CD4+ (L3T4+) cells requires class II MHC homologies between T-cells and antigen presenting cells, whereas recognition by CD8+ (Ly2+) T-cells is MHC class I restricted (rev., Swain, 1983).


Major Histocompatibility Complex Major Histocompatibility Complex Class Genetic Homology Major Histocompatibility Complex Restriction Restricting Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball, E. J., and Stastny, P., 1984a, Antigen-specific HLA-restricted human T-cell lines. I. An MT3-like restriction determinant distinct from HLA-DR, Immunogenetics, 19: 13.PubMedCrossRefGoogle Scholar
  2. Ball, E. J., and Stastny, P., 1984b, Antigen-specific HLA-restricted human T-cell lines. II. A GAT-specific T-cell line restricted by a determinant carried by an HLA-DQ molecule, Immunogenetics, 20:547.PubMedCrossRefGoogle Scholar
  3. Betuel, H., Gebuhrer, L., Schreuder, G. M. T., Layrisse, Z., Villena, A. A., and Goldman, S. F., 1984, HLA-DRw8, in: “Histocompatibility Testing 1984,” E. D. Albert, M. P. Baur, and W. R. Mayr, eds., Springer-Verlag, New York.Google Scholar
  4. Bodmer, J. G., 1977, Ia serology, in: “Histocompatibility Testing 1977,” W. F. Bodmer, J. R. Batchelor, J. G., Bodmer, H. Festenstein, and P. J. Morris, eds., Munksgaard, Copenhagen.Google Scholar
  5. Cohen, D., LeGall, I., Marcadet, A., Font, M., Lalouel, J., and Dausset, J., 1984, Clusters of HLA class II 0 restriction fragments describe allelic series, Proc. Natl. Acad. Sci. U.S.A., 81: 7870.PubMedCrossRefGoogle Scholar
  6. Eckels, D. D., Lake, P., Lamb, J. R., Johnson, A. H., Shaw, S., Woody, J. N., and Hartzman, R. J., 1983, SB-restricted presentation of influenza and herpes simplex virus antigens to human T-lymphocyte clones, Nature, 301: 716.CrossRefGoogle Scholar
  7. Ferrara, G. B., Park, M. S., Tanigaki, N., and Terasaki, P. I., 1984, HLA-DQwl, in: “Histocompatibility Testing 1984,” E. D. Albert, M. P. Baur, and W. R. Mayr, eds., Springer-Verlag, New York.Google Scholar
  8. Fleischer, B., Pawelec, G., and Wernet, P., 1985, Homozygous typing cell-defined HLA-Dw specificities correlate better than serologicaliy defined HLA-DR specificities with restriction elements for influenza virus-specific proliferative human T lymphocyte clones, Human Immunol., 14: 37.CrossRefGoogle Scholar
  9. Giles, R. C., DeMars, R., Chang, C. C., and Capra, J. D., 1985, Allelic polymorphism and transassociation of molecules encoded by the HLA-DQ subregion, Proc. Natl. Acad. Sci. U.S.A., 82: 1776.PubMedCrossRefGoogle Scholar
  10. Hanke, J. H., Brown, M. F., Pollack, M. S., and Rich, R. R., 1985, Class II determinants recognized by TNP-specific cloned human T cell lines, Human Immunol., 14: 59.CrossRefGoogle Scholar
  11. Hanke, J. H., Cook, R. G., Leone, J. W., Van, M., and Rich, R. R., 1986, Molecular characterization of a subtype of DQw1 recognized by haptenspecific T cells, Immunogenetics, 24: 209.PubMedCrossRefGoogle Scholar
  12. Nicklas, J. A., Miyachi, Y., Taurog, J. D., Wee, S., Chen, L., Grumet, F. C., and Bach, F. H., 1984, HLA loss varients of a B27+ lymphoblastoid cell line: Genetic and cellular characterization, Human Immunol., 11: 19.CrossRefGoogle Scholar
  13. Ottenhoff, T. H., M., Elferink, D. G., Hermans, J., and DeVries, R. R., 1985, HLA class II restriction repertoire of antigen-specific T cells. I. The main restriction determinants for antigen presentation are associated with HLA D/DR and not with DP and DQ, Human Immunol., 13:105.CrossRefGoogle Scholar
  14. Ottenhoff, T. H., M., Elferink, D. G., Hermans, J., and DeVries, R. R., Pawelec, G., Ziegler, A., and Wernet, P., 1985, Dissection of human allo-stimulatory determinants with cloned T cells: Stimulation inhibition by monoclonal antibodies Tü22, 34, 35, 36, 37, 39, 43, and 58 against distinct human MHC class II molecules, Human Immunol., 12: 165.CrossRefGoogle Scholar
  15. Qvigstad, E., Moen, T., and Thorsby, E., 1984a, T-cell clones with similar antigen specificity may be restricted by DR, MT (DC), or SB class II HLA molecules, Immunogenetics, 19: 455.PubMedCrossRefGoogle Scholar
  16. Qvigstad, E., Gaudernack, G., and Thorsby, E., 1984b, Antigen-specific T cell clones restricted by DR, DRw53 (MT3), or DP (SB) class II HLA molecules. Inhibition studies with monoclonal HLA-specific antibodies, Human Immunol., 11: 207.CrossRefGoogle Scholar
  17. Rich, R. R., ElMasry, M. N., and Fox, E. J., 1986, Human suppressor T cells: Induction, differentiation, and regulatory functions, Human Immunol., 17: 369.CrossRefGoogle Scholar
  18. Seldin, M. F., Rich, R. R., and Dupont, B., 1979, Human immune responses to hapten-conjugated cells. H. The roles of autologous and allogeneic histocompatibility determinants in proliferative responses in vitro, J. Immunol., 122: 1828.PubMedGoogle Scholar
  19. Shackelford, D. A., Mann, D. L., van Rood, J. J., Ferrara, G. B., and Strominger, J. L., 1981, Human B-cell alloantigens DC1, MT1, and LB12 are identical to each other but distinct from the HLA-DR antigen, Proc. Natl. Acad. Sci. U.S.A., 78: 4566.PubMedCrossRefGoogle Scholar
  20. Shaw, S., and Shearer, G. H., 1978, Human cytotoxic responses in vitro to trinitrophenyl-modified autologous cells. II. Diversity of self determinants recognized in association with TNP, J. Immunol., 121: 290.PubMedGoogle Scholar
  21. Shearer, G. M., Rehn, T. G., and Schmitt-Verhulst, A.-M., 1976, Role of the murine major histocompatibility complex in the specificity of in vitro T cell-mediated lympholysis against chemically-modified autologous lymphocytes, Transplant. Rev., 29: 222.PubMedGoogle Scholar
  22. Swain, S. L., 1983, T cell subsets and the recognition of MHC class, Immunol. Rev., 74: 129.PubMedCrossRefGoogle Scholar
  23. Thomas, D. W., Yamashita, U., and Shevach, E. M., 1977, The role of Ia antigens in T cell activation, Immunol. Rev., 35: 97.CrossRefGoogle Scholar
  24. Tosi, R., Tanigaki, N., Centis, D., Ferrara, G. B., and Pressman, D., 1978, Immunological dissection of human la molecules, J. Exp. Med., 148: 1592.PubMedCrossRefGoogle Scholar
  25. Trowsdale, J., Young, J. A. T., Kelly, A. P., Austin, P. J., Carson, S., Meunier, H., So, A., Erlich, H. A., Spielman, R. S., Bodmer, J., and Bodmer, W. F., 1985, Structure, sequence and polymorphism in the HLA-D region, Immunol. Rev., 85: 5.PubMedCrossRefGoogle Scholar
  26. Wiman, K., Larhammar, D., Claesson, L., Gustafsson, K., Schenning, L., Bill, P., Böhme, J., Denaro, M., Dobberstein, B., Hammerling, U., Kvist, S., Servenius, B., Sundelin, J., Peterson, P. A., and Rask, L., 1982, Isolation and identification of a cDNA clone corresponding to an HLA-DR antigen β chain, Proc. Natl. Acad. Sci. U.S.A., 79: 1703.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Robert R. Rich
    • 1
  • Jeffrey H. Hanke
    • 1
  • Richard G. Cook
    • 1
  1. 1.Howard Hughes Medical Institute Department of Microbiology and ImmunologyBaylor College of MedicineHoustonUSA

Personalised recommendations