Advertisement

Phase Partitioning in Space and on Earth

  • James M. Van Alstine
  • Laurel J. Karr
  • J. Milton Harris
  • Robert S. Snyder
  • Stephan B. Bamberger
  • Helen C. Matsos
  • Peter A. Curreri
  • John Boyce
  • Donald E. Brooks
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 225)

Abstract

In aqueous solution at low concentrations, the neutral polymers dextran and poly(ethylene glycol) (PEG) rapidly form a two-phase system consisting of a PEG-rich phase floating on top of a dextran-rich phase. Biological particles and macromolecules tend to partition differentially between the phases and the liquid-liquid phase interface in these systems. Bioparticle partitioning has been shown to be related to physiologically important surface properties such as membrane charge or lipid composition.

Affinity partitioning into the PEG-rich phase can be accomplished by coupling PEG to a ligand having affinity for specific cells or macromolecules. Subpopulations can be identified or separated using multi-step countercurrent distribution (CCD).

Incomplete understanding of the influence of gravity on the efficiency and quality of the impressive separations achievable by partitioning, and appreciation for the versatility of this efficient technique, have led to its study for low-gravity biomaterials processing. On Earth, two-phase systems rapidly demix because of density differences between the phases. In low-gravity, demixing has been shown to occur primarily by coalescence. Polymer surface coatings, developed to control localization of demixed phases in low-g, have been found to control electroosmosis which adversely affects electrophoretic separation processes on Earth and in space. In addition PEG-derivatized antibodies have been synthesized for use in immunoaffinity cell partitioning.

Keywords

Interfacial Tension Phase System Affinity Ligand Countercurrent Distribution Phase Droplet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertsson, P. A., 1965, Partition studies on nucleic acids I. Influence of electrolytes, polymer concentration and nucleic acid conformation on partition in the dextran-polyethylene glycol system, Biochim. Biophys. Acta, 103: 1.PubMedCrossRefGoogle Scholar
  2. Albertsson, P. A., 1970, Partition of cell particles and macromolecules, Adv. Prot. Chem., 24: 309.CrossRefGoogle Scholar
  3. Albertsson, P. A., 1986, “Partition of Cell Particles and Macromolecules,” 3rd Edn., John Wiley and Sons, New York.Google Scholar
  4. Abuchowski, A., Kazo, G. M., Verhoest, Jr., C. R., van Es, D., Nucci, M. L., Kafkewitz, T., Viau, A. T., and Davis, F. F., 1984, Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates, Cancer Biochm. Biophys., 7: 175–186.Google Scholar
  5. Allan, R. S., and Mason, S. G., 1962, Particle motions in sheared suspensions XIV. Coalescence of liquid drops in electric and shear fields, J. Colloid Sci., 17: 382.CrossRefGoogle Scholar
  6. Bamberger, S., Seaman, G. V. F., Sharp, K. A., and Brooks, D. E., 1984, The effects of salts on the interfacial tension of aqueous dextran poly(ethylene glycol) phase systems, J. Colloid and Interf. Sci., 99: 194.CrossRefGoogle Scholar
  7. Bamberger, S., Brooks, D. E., Sharp, K. A., Van Alstine, J. M., and Webber, T. J., 1985, Preparation of phase systems and measurement of their physicochemical properties, in: Walter, Brooks, and Fisher, 1985, p. 85.Google Scholar
  8. Bamberger, S., Van Alstine, J. M., Harris, J. M., Baird, J. K., Snyder R. S., Boyce, J., and Brooks, D. E., 1987, Demixing of aqueous polymer two-phase systems in low gravity, Sepn. Sci. and Technol., submitted.Google Scholar
  9. Brooks, D. E., 1984, Two-phase systems for biotechnical isolations, Biotechnology, 1: 668.Google Scholar
  10. Brooks, D. E., Seaman, G. V. F., and Walter, H., 1971, Detection of differences in surface charge associated properties of cells by partition in two polymer aqueous phase systems, Nature New Biology, 234: 61.PubMedCrossRefGoogle Scholar
  11. Brooks, D. E., and Bamberger S., 1982, Studies on aqueous polymer two-phase systems useful for the partitioning of biological materials, in: “Materials Processing in the Reduced Gravity Environment of Space,” G. E. Rindone, ed., Elsevier, Amsterdam, p. 233.Google Scholar
  12. Brooks, D. E., Bamberger, S. B., Harris, J. M., and Van Alstine, J., 1984a, Rationale for two phase polymer system microgravity separation experiments, in: “Proceedings of the 5th European Symposium on Material Sciences Under Microgravity”, European Space Agency Publication SP-222, p. 315.Google Scholar
  13. Brooks, D. E., Sharp, K. A., Bamberger, S., Tamblyn, C. H., Seaman, G.V.F., and Walter, H., 1984b, Electrostatic and electrokinetic potentials in two polymer aqueous phase systems, J. Colloid Interf. Sci., 102: 1.CrossRefGoogle Scholar
  14. Brooks, D. E., Sharp, K. A., and Fisher, D., 1985, Theoretical aspects of partitioning, in: Walter, H., Brooks, D. E., and Fisher D., 1985, p. 11.Google Scholar
  15. Brooks, D. E., Boyce, J., Bamberger, S. B., Harris, J. M., and Van Alstine, J. M., 1986, Separation of biological materials in microgravity, Proceedings of National Research Council of Canada NRC Publications Meeting on Space Biomedicine and Biotechnology, Ottawa, May 29–30, 1986.Google Scholar
  16. Chappelear, D. C., 1961, Models of a liquid drop approaching an interface, J. Colloid Sci., 16: 186.CrossRefGoogle Scholar
  17. Clark, A. N., and Wilson, D. J., 1983, Foam Flotation Theory and Applications, Marcel Dekker Inc., New York, pp. 97–128.Google Scholar
  18. Curreri, P. A., Van Alstine, J. M., Brooks, D. E., Bamberger, S., and Snyder, R. S., 1985, On the stability of high volume fraction immiscible dispersions in low gravity, NASA, Space Science Laboratory, Alabama, 35812, Preprint No. 85–156.Google Scholar
  19. Eriksson, E., Albertsson, P. A., and Johansson, G., 1976, Hydrophobic surface properties of erythrocytes studied by affinity partition in aqueous two-phase systems, Molec. Cell. Biochem., 10: 123.PubMedCrossRefGoogle Scholar
  20. Eriksson, E., and Albertsson, P. A., 1978, Partition of liposomes in aqueous two-phase systems, Biochim. Biophys. Acta, 507: 425.CrossRefGoogle Scholar
  21. Feuerbacher, B., Hamacher, H., and Naumann, R. J., 1986, “Materials Sciences in Space”, Springer Verlag, New York.CrossRefGoogle Scholar
  22. Fidler, I. J., 1973, Selection of successive tumor lines for metastasis, Nature New Biol., 97: 597.Google Scholar
  23. Flanagan, S. D., and Barondes, S. H., 1978, Affinity partitioning: A method for purification of proteins using specific polymer ligands in aqueous polymer two-phase systems, J. Biol. Chem., 251: 858.Google Scholar
  24. Flanagan, S. D., 1984, Affinity phase partitioning, in: “Receptor Purification Procedures”, J. C. Venter and L. C. Harrison, eds., Alan R. Liss Inc., New York, p. 15.Google Scholar
  25. Harris, J. M., 1985, Laboratory synthesis of polyethylene glycol derivatives, J. Macromol. Sci., Rev. Macromol, Chem. Phys., C25(3):325CrossRefGoogle Scholar
  26. Harris, J. M., Struck, E. C., Case, M. G., Paley, M. S., Van Alstine, J. M., and Brooks, D. E., 1984, Synthesis and characterization of poly(ethylene glycol) derivatives, J. Polymer Sci., Polymer Chem. Edn., 22: 341.CrossRefGoogle Scholar
  27. Harris, J. M., and Yalpani, M., 1985, Polymer-ligands used in affinity partitioning and their synthesis, in: Walter, Brooks, and Fisher, 1985, p. 590.Google Scholar
  28. Harris, J. M., Brooks, D. E., Boyce, J. F., Snyder, R. S., and Van Alstine J. M., 1986, Hydrophillic polymer coatings for control of electroosmosis and wetting, in: “Dynamic Aspects of Polymer Surfaces: Proceedings of the 5th Rocky Mountain ACS Meeting”, J. D. Andrade, ed., American Chemical Society, Washington, in press.Google Scholar
  29. Hlady, V., Van Wagenen, R. A., and Andrade, J. D., 1985, Total internal reflection intrinsic fluorescence (TIRIF) spectroscopy applied to protein adsorption, in: “Surface and Interfacial Aspects of Biomedical Polymers,” Vol. 2, Protein Adsorption, J. D. Andrade, ed., Plenum Press, New York, p. 81.Google Scholar
  30. Hustedt, H., Kroner, K. H., and Kula, M. R., 1985, Applications of phase partitioning in biotechnology, in: Walter, Brooks, and Fisher 1985, p. 529Google Scholar
  31. Johansson, G., 1985, Partitioning of proteins, in: Walter, Brooks, Fisher, 1985, p. 161.Google Scholar
  32. Karr, L. J., Shafer, S. G., Harris, J. M., Van Alstine, J. M., and Snyder, R. S., 1986, Immuno-affinity partition’of cells in aqueous polymer two-phase systems, J. Chromatography, 354: 269.CrossRefGoogle Scholar
  33. Kessel, D., Butler, W. B., Iyer, V. K., and Horwitz, J. P., 1982, Estrogen bridged purines: A new series of anti-tumor agents which alter cell membrane properties, Biochem. Biophys. Res. Commun., 109: 45.PubMedCrossRefGoogle Scholar
  34. Kihlström, E., and Magnusson, K. E., 1980, Association of Hela cells of LPS mutants of “Salmonella typhimurium” and “Salmonella minnesota” in relation to their physiochemical surface properties, Cell Biophys., 2: 177.PubMedGoogle Scholar
  35. Kopperschläger, G., Lorenz, G., and Usbeck, E., 1983, Application of affinity partitioning in aqueous two-phase systems to the investigation of triazine dye-enzyme interactions, J. Chrom., 259: 97.CrossRefGoogle Scholar
  36. Kula, M. R., Kroner, K. H., and Hustedt, H., 1982, Purification of enzymes by liquid-liquid extraction, in: “Advances in Biochemical Engineering,” A. Fiechter ed., Springer-Verlag, Berlin, p. 73.Google Scholar
  37. Matiasson, B., 1983, Applications of aqueous two-phase systems in biotechnology, Trends in Biotechnology, 1: 16.CrossRefGoogle Scholar
  38. Malström, P., Nelson, K., Jönsson, A., Sjögren, H. O., Walter, H., and Albertsson, P. A., 1978, Separation of rat leukocytes by countercurrent distribution in aqueous two-phase systems I. Characterization of subpopulations of cells, Cell. Immunol., 37: 409.CrossRefGoogle Scholar
  39. Malstrom, P., Jonsson, A., Hallberg, T., and Sjogren, H. O., 1980, Countercurrent distribution of lymphocytes from human peripheral blood in aqueous two-phase systems. I. Separation into subsets of lymphocytes bearing distinctive markers, Cell Immunol., 53: 39.CrossRefGoogle Scholar
  40. McKay, G. D. M., and Mason, S. G., 1963, The gravity approach and coalescence of fluid drops at liquid interfaces, Can. J. Chem. Eng., 41: 203.CrossRefGoogle Scholar
  41. Michalski, J. P., Razandi, M., McCombs, C. C., and Walter, H., 1983, Surface properties of lymphocyte subpopulations in autoimmune NZB/NZW F1 hybrid mice: Alterations correlated with the immunodeficiency of aging, Clin. Immunol. Immunopathol., 29: 15.PubMedCrossRefGoogle Scholar
  42. Miner, K. M., Walter, H., and Nicolson, G. L., 1981, Subfraction of malignant variants of metastatic murine lymphosarcoma cells by countercurrent distribution in two polymer aqueous phases, Biochemistry, 20: 6244.PubMedCrossRefGoogle Scholar
  43. Müller, W., 1985, Partitioning of nucleic acids, in: Walter, Brooks, and Fisher, 1985, p. 227.Google Scholar
  44. Muller, W., and Kütemeier, G., 1982, Size fractionations of DNA fragments ranging from 20 to 30,000 base pairs by liquid/liquid chromatography, Eur. J. Biochem., 128: 231.PubMedCrossRefGoogle Scholar
  45. Pettijohn, D. E., 1967, A study of partially devatured DNA, protein-DNA complexes in the polyethylene glycol-dextran phase system, Eur. J. Biochem., 3: 25.PubMedCrossRefGoogle Scholar
  46. Poste, G., Doll, J., and Fidler, I. J., 1981, Interactions among clonal subpopulations affect stability of the metastatic phenotype in polyclonal populations of B16 melanoma cells, Proc. Nat. Acad. Sci., US, 78: 6226.CrossRefGoogle Scholar
  47. Reitherman, R., Flanagan, S. D., and Barondes, S. H., 1973, Electromotive phenomena in the partition of erythrocytes in aqueous polymer two phase systems, Biochim. Biophys. Acta, 297: 193.PubMedCrossRefGoogle Scholar
  48. Schurch, S., Gerson, D. F., and McIver, D. J. L., 1981, Determination of cell/medium interfacial tensions from contact angles in aqueous polymer systems. Biochim. Biophys. Acta, 640: 557.PubMedCrossRefGoogle Scholar
  49. Shanbhag, V. P. and Johansson, G., 1974, Specific extraction of human serum albumin by partition in aqueous biphasic systems containing poly(ethylene glycol)-bound ligand, Biochem. Biophys. Res. Commun., 61: 1141.PubMedCrossRefGoogle Scholar
  50. Sharp, K. A., 1985, Ph.D. Thesis, University of Britsh Columbia, Vancouver.Google Scholar
  51. Sharp, K. A., Yalpani, M., Howard, S. J., and Brooks, D. E., 1986, Synthesis and application of a poly(ethylene glycol) antibody affinity ligand for cell separations in aqueous polymer two-phase systems, Anal. Biochem., 154: 110.PubMedCrossRefGoogle Scholar
  52. Sharp, K. A., Brooks, D. E., Van Alstine, J. M., and Bamberger, S., 1987, Mechanisms of cell partition in aqueous polymer two-phase systems, Biophys. J., submitted.Google Scholar
  53. Snyder, R. S., 1986, Separation techniques, in: B. Feuerbacher, R. Naumann, and H. Hamacher, p. 465.Google Scholar
  54. Van Alstine, J. M., and Brooks, D. E., 1983, Cell membrane abnormality detected in erythrocytes from multiple sclerosis patients by partition in two-polymer aqueous-phase systems, Clin. Chem., 30: 441.Google Scholar
  55. Van Alstine, J. M., Harris, J. M., Snyder, S., Curreri, P. A., Bamberger, S., and Brooks, D. E., 1984, Separation of aqueous two-phase polymer systems in microgravity, in: Proceedings of the 5th European Symposium on Material Sciences Under Microgravity, European Space Agency Publication SP-222, p. 309.Google Scholar
  56. Van Alstine, J. M., Karr, L. J., Snyder, R. S., and Harris, J. M., 1985, Cell separation with countercurrent chromatography and thin-layer countercurrent distribution in aqueous two-phase systems, J. Liq. Chrom., 8: 2293.CrossRefGoogle Scholar
  57. Van Alstine, J. M., Sharp, K. A., and Brooks, D. E., 1986a, Critical micelle concentration dependence on head group size in polyoxyethylene nonionic surfactants, Colloids Surf., 17: 115.CrossRefGoogle Scholar
  58. Van Alstine, J. M., Sorensen, P., Webber, T. J., Greig, R., Poste, G., and Brooks, D. E., 1986b, Heterogeneity in the surface properties of B16 melanoma cells from sublines with differing metastatic potential detected via two-polymer aqueous-phase partition, Exptl. Cell Res., 164: 366.PubMedCrossRefGoogle Scholar
  59. Van Alstine, J. M., Trust, J., and Brooks, D. E., 1986c, Differential partition of virulent “Aeromonas salmonicida” and attenuated derivatives possessing specific cell surface alterations in polymer aqueous phase systems, Appl. Environ, Microbi., 51: 1309.Google Scholar
  60. Walter, H., 1985, Surface properties of cells reflected by partitioning: Red blood cells as a model, in: Walter, Brooks, and Fisher, 1985, p. 328.Google Scholar
  61. Walter, H., Miller, A., Krob, E. S., and Ascher, G. S., 1971, Alterations in membrane surface properties of reticulocytes during maturation as determined by partition in two polymer aqueous phase systems, Exptl. Cell Res., 69: 416.PubMedCrossRefGoogle Scholar
  62. Walter, H., Sasakawa, S., and Albertsson, P. A., 1972, Cross partition of proteins. Effect of ionic composition and concentration, Biochemistry, 11: 3880.PubMedCrossRefGoogle Scholar
  63. Walter, H., Krob, E. J., and Brooks, D. E., 1976a, Membrane surface properties other than charge involved in cell separation by partition in polymer, aqueous two-phase systems, Biochemistry, 15: 2959.PubMedCrossRefGoogle Scholar
  64. Walter, H., Krob, E. S., and Tung, R., 1976b, Hydrophobic affinity partition in aqueous two-phase systems of erythrocytes from different species. Systems containing polyethylene glycol-palmitate, Exptl. Cell Res., 102: 14.PubMedCrossRefGoogle Scholar
  65. Walter, H., Moncla, B. J. Webber, T. J., and Nagaya, H., 1979, Membrane charge-associated heterogeneity of B-lymphocytes from human peripheral blood as reflected by cell partition in two-polymer aqueous phases, Exptl. Cell Res., 122: 380.PubMedCrossRefGoogle Scholar
  66. Walter, H., Graham, L. L. Krob, E. G., and Hill, M., 1980, Correlation between phagocytic and membrane surface properties reflected by partitioning of human blood monocytes in two polmer aqueous phases, Biochim. Biophys. Acta., 602: 309.PubMedCrossRefGoogle Scholar
  67. Walter, H., Brooks, D. E., and Fisher, D., 1985, “Partitioning in Aqueous Two-Phase Systems. Theory, Methods, Uses and Applications to Biotechnology,” Academic Press, New York.Google Scholar
  68. Walter, H., Krob, E. J., Pedram, A., Tamblyn, C. H., and Seaman, G.V.F., 1986, Effect of surface modification of rat erythrocytes of different ages on their partitioning behavior in charge-sensitive two-polymer aqueous phases, Biochim. Biophys. Acta, 860: 650.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • James M. Van Alstine
    • 2
    • 1
  • Laurel J. Karr
    • 1
  • J. Milton Harris
    • 3
  • Robert S. Snyder
    • 1
  • Stephan B. Bamberger
    • 4
  • Helen C. Matsos
    • 1
  • Peter A. Curreri
    • 1
  • John Boyce
    • 5
  • Donald E. Brooks
    • 4
    • 5
  1. 1.Biophysics Branch, ES76, Space Science LaboratoryNASA/Marshall Space Flight CenterHuntsvilleUSA
  2. 2.Universities Space Research AssociationUSA
  3. 3.Department of ChemistryUniversity of Alabama at HuntsvilleHuntsvilleUSA
  4. 4.Department of NeurologyOregon Health Sciences UniversityPortlandUSA
  5. 5.Departments of Pathology and ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations