Intracellular Traffic of the Mannose 6-Phosphate Receptor and Its Ligands

  • Catherine M. Nolan
  • William S. Sly
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 225)


Eukaryotic cells are compartmentalized, increasing the efficiency of the cell by allowing the existence of microenvironments of unique properties and by segregating potentially incompatible biochemical reactions. The targeting of newly synthesized macromolecules to their correct location within the cell and the maintenance of the distinctive macromolecular composition of these compartments is an important feature of cellular organization. The mechanisms by which cells direct the intracellular traffic of macromolecules are the subject of much investigation in cell biology. One well-studied example of intracellular sorting and trafficking is the mannose 6-phosphate-mediated transport of lysosomal enzymes.


Golgi Apparatus Lysosomal Enzyme Acid Hydrolase Intracellular Traffic Intracellular Sorting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bishop, D.F., Calhoun, D.H., Bernstein, H.S., Hantzopoulos, P., Quinn, M., and Desnick, R. J., 1986, Human a-galactosidase A: Nucleotide sequence of a eDNA clone encoding the mature enzyme, Proc. Natl. Acad. Sei. USA, 83: 4859–4863.CrossRefGoogle Scholar
  2. Brown, W.J., Constantinescu, E., and Farquhar, M.G., 1984, Redistribution of mannose 6-phosphate receptors induced by tunicamycin and chloroquine, J. Cell Biol., 99: 320–326.PubMedCrossRefGoogle Scholar
  3. Brown, W.J., and Farquhar, M.G., 1984, The mannose 6-phosphate receptor for lysosomal enzymes is concentrated in cis Golgi cisternae, Cell, 36: 295–307.PubMedCrossRefGoogle Scholar
  4. Brown, W.J., Goodhouse, J., and Farquhar, M.G., 1986, Mannose 6-phosphate receptors for lysosomal enzymes cycle between the Golgi complex and endosomes, J. Cell Biol., 103: 1235–1247.PubMedCrossRefGoogle Scholar
  5. Creek, K.E., Grubb, J.H., and Sly, W.S., 1983 Immunological inactivation of receptor-mediated uptake and intracellular sorting of lysosomal enzymes, J. Cell Biol., 97:253a (abstract).Google Scholar
  6. Creek, K.E., and Sly, W.S., 1983, Biosynthesis and turnover of the phospho- mannosyl receptor in human fibroblasts, Biochem. J., 214: 353–360.PubMedGoogle Scholar
  7. Creek, K.E., and Sly, W.S., 1984, The role of the phosphomannosyl receptor in the transport of acid hydrolases to lysosomes, in: “Lysosomes in Biology and Pathology,” J.T. Dingle, R.T. Dean, and W.S. Sly, eds., Elsevier, Amsterdam.Google Scholar
  8. De Duve, C., De Barsy, T., Poole, B., Trouet, A., Tulkens, P., and van Hoof, F., 1974, Lysosomotropic agents, Biochem. Pharmacol., 23: 2495–2531.PubMedCrossRefGoogle Scholar
  9. Dunphy, W.G., Fries, E., Urbani, L.J., and Rothman, J.E., 1981, Early and late functions associated with the Golgi apparatus reside in distinct compartments, Proc. Natl. Acad. Sci. USA, 78:7453–7457.Google Scholar
  10. Faust, P.L., Kornfeld, S., and Chirgwin, J.M., 1985, Cloning and sequence analysis of eDNA for human cathepsin D, Proc. Natl. Acad. Sci. USA, 82: 4910–4914.PubMedCrossRefGoogle Scholar
  11. Fedde, K.N., and Sly, W.S., 1985, Ricin-binding properties of acid hydrolases from isolated lysosomes implies prior processing by terminal transferases of the trans-Golgi apparatus, Biochem. Biophys. Res. Commun., 133: 614–620.PubMedCrossRefGoogle Scholar
  12. Fischer, H.D., Gonzalez-Noriega, A., and Sly, W.S., 1980a, 8-glucuronidase binding to human fibroblast membrane receptors, J. Biol. Chem., 255: 5069–5074.PubMedGoogle Scholar
  13. Fischer, H.D., Gonzalez-Noriega, A., Sly, W.S., and Morre, D.J., 1980b, Phosphomannosyl-enzyme receptors in rat liver, J. Biol. Chem., 255: 9608–9615.PubMedGoogle Scholar
  14. Fischer, H.D., Natowicz, M., Sly, W.S., and Bretthauer, R.K., 1980e, Fibroblast receptor for lysosomal enzymes mediates pinocytosis of multivalent phosphomannan fragment, J. Cell Biol., 84: 77–86.PubMedCrossRefGoogle Scholar
  15. Freeze, H.H., Miller, A.L., and Kaplan, A., 1980, Acid hydrolases from Dictyostelium discoideum contain phosphomannosyl recognition markers, J. Biol. Chem., 255:11081–11084.PubMedGoogle Scholar
  16. Fukushima, H., de Wet, J.R., and O’Brien, J.S., 1985, Molecular cloning of a eDNA for human a-L-fucosidase, Proc. Natl. Acad. Sci. USA, 82: 1262–1265.Google Scholar
  17. Gabel, C.A., Costello, C.E., Reinhold, V.N., Kurtz, L., and Kornfeld, S., 1984, Identification of methyiphosphomannosyl residues as components of the high mannose oligosaccharides of Dictyostelium discoideum glycoproteins, J. Biol. Chem., 259: 13762–13769.PubMedGoogle Scholar
  18. Gartung, C., Braulke, T., Hasilik, A., and von Figura, K., 1985, Internalization of blocking antibodies against mannose 6-phosphate specific receptors, EMBO J., 4: 1725–1730.PubMedGoogle Scholar
  19. Geuze, H.J., Slot, J.W., Strous, G.J.A.M., Hasilik, A., and von Figura, K., 1984, Ultrastructural localization of the mannose 6-phosphate receptor in rat liver, J. Cell Biol., 98: 2045–2054.CrossRefGoogle Scholar
  20. Geuze, H.J., Slot, J.W., Strous, G.J.A.M., Hasilik, A., and von Figura, K., 1985, Possible pathways for lysosomal enzyme delivery, J. Cell Biol., 101: 2253–2262.PubMedCrossRefGoogle Scholar
  21. Geuze, H.J., Slot, J.W., Strous, G.J.A.M., Lodish, H.F., and Schwartz, A.L., 1983, Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-labeling immunoelectron microscopy during receptor-mediated endocytosis, Cell, 32: 277–287.PubMedCrossRefGoogle Scholar
  22. Goldberg, D., Gabel, C., and Kornfeld, S., 1984, Processing of lysosomal enzyme oligosaccharide units, in: “Lysosomes in Biology and Pathology,” J.T. Dingle, R.T. Dean, and W.S. Sly, eds., Elsevier Press, New York.Google Scholar
  23. Goldberg, D.E., and Kornfeld, S., 1981, The phosphorylation of 0-glucuronidase oligosaceharides in mouse P388D1 cells, J. Biol. Chem., 256: 13060–13067.PubMedGoogle Scholar
  24. Goldberg, D.E., and Kornfeld, S., 1983, Evidence for extensive subcellular organization of asparagine-linked oligosaccharide processing and lysosomal enzyme phosphorylation, J. Biol. Chem., 258: 3159–3165.PubMedGoogle Scholar
  25. Gonzalez-Noriega, A., Grubb, J.H., Talkad, V., and Sly, W.S., 1980, Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling, J. Cell Biol., 85: 839–852.PubMedCrossRefGoogle Scholar
  26. Hasilik, A., Klein, U., Waheed, A., Strecker, G., and von Figura, K., 1980, Phosphorylated oligosaceharides in lysosomal enzymes: Identification of a -N-acetylglucosamine(1)phospho(6)mannose diester groups, Proc. Natl. Acad. Sci. USA, 77: 7074–7078.Google Scholar
  27. Hasilik, A., and Neufeld, E.F., 1980, Biosynthesis of lysosomal enzymes in fibroblasts, J. Biol. Chem., 255: 4937–4945.PubMedGoogle Scholar
  28. Hasilik, A., and von Figura, K., 1984, Processing of lysosomal enzymes in fibroblasts, in: “Lysosomes in Biology and Pathology,” J.T. Dingle, R.T. Dean, and W.S. Sly, eds., Elsevier, Amsterdam.Google Scholar
  29. Hickman, S., and Neufeld, E.F., 1972, A hypothesis for I-cell disease: Defective hydrolases that do not enter lysosomes, Biochem. Biophys. Res. Commun., 49: 992–999.PubMedCrossRefGoogle Scholar
  30. Hoflack, B., and Kornfeld, S., 1985a, Lysosomal enzyme binding the mouse P388D1 macrophage membranes lacking the 215-kDa mannose 6-phosphate receptor: Evidence for the existence of a second mannose 6-phosphate receptor, Proc. Natl. Acad. Sci. USA, 82: 4428–4432.PubMedCrossRefGoogle Scholar
  31. Hoflack, B., and Kornfeld, S., 1985b, Purification and characterization of a cation-dependent mannose 6-phosphate receptor from murine P388D1 macrophages and bovine liver, J. Biol. Chem., 260: 12008–12014.PubMedGoogle Scholar
  32. Kaplan, A., Achord, D.T., and Sly, W.S., 1977, Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts, Proc. Natl. Acad. Sei. USA, 74: 2026–2030.CrossRefGoogle Scholar
  33. Korneluk, R.G., Mahuran, D.J., Neote, K., Klavins, M.H., O’Dowd, B.F., Tropak, M., Willard, H.F., Anderson, M.J., Lowden, J.A., and Gravel, R.A., 1986, Isolation of eDNA clones coding for the a subunit of human ß-hexo-saminidase, J. Biol. Chem., 261: 8407–8413.PubMedGoogle Scholar
  34. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Ann. Rev. Biochem., 54: 631–664.PubMedCrossRefGoogle Scholar
  35. Lang, L., Reitman, M.L., Tang, J., Roberts, R.M., and Kornfeld, S., 1984, Lysosomal enzyme phosphorylation, J. Biol. Chem., 259: 14663–14667.PubMedGoogle Scholar
  36. Lemansky, P., Gieselmann, V., Hasilik, A., and von Figura, K., 1985, Synthesis and transport of lysosomal acid phosphatase in normal and I-cell fibroblasts, J. Biol. Chem., 260: 9023–9030.PubMedGoogle Scholar
  37. McKusick, V.A., and Neufeld, E.F., 1983, The mucopolysaccharide storage diseases, in: “The Metabolic Basis of Inherited Disease,” fifth edition, J.B. Stanbury, J.B. Wyngaarden, D.S. Frederickson, J.L. Goldstein, and M.S. Brown, eds., McGraw-Hill, New York.Google Scholar
  38. Mitchell, D.C., Maler, T., and Jourdian, G.W., 1984, Detergent dissociation of bovine liver phosphomannosyl binding protein, J. Cell. Biochem., 24: 319–330.PubMedCrossRefGoogle Scholar
  39. Myerowitz, R., Piekarz, R., Neufeld, E.F., Shows, T.B., and Suzuki, K., 1985, Human ß-hexosaminidase a chain: Coding sequence and homology with the ß chain, Proc. Natl. Acad. Sci. USA, 82: 7830–7834.PubMedCrossRefGoogle Scholar
  40. Nishimura, Y., Rosenfeld, M.G., Kreibich, G., Gubler, U., Sabatini, D.D., Adesnik, M., and Andy, R., 1986, Nucleotide sequence of rat preputial gland ß-glueuronidase eDNA and in vitro insertion of its encoded polypeptide into microsomal membranes, Proc. Natl. Acad. Sci. USA, 83: 7292–7296.PubMedCrossRefGoogle Scholar
  41. Ohkuma, S., and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sei. USA, 75: 3327–3331.CrossRefGoogle Scholar
  42. Oshima, A., Kyle, J.W., Miller, R.D., Hoffmann, J.W., Powell, P.P., Grubb, J.H., Sly, W.S., Tropak, M., Guise, K.S., and Gravel, R.A., 1987, Cloning, sequencing, and expression of cDNA for human -glucuronidase, Proc. Natl. Acad. Sci. USA, 84: 685–689.PubMedCrossRefGoogle Scholar
  43. Owada, M., and Neufeld, E.F., 1982, Is there a mechanism for introducing acid hydrolases into liver lysosomes that is independent of mannose 6-phosphate recognition? Mechem. Biophys. Res. Commun., 105: 814–820.CrossRefGoogle Scholar
  44. Pohlmann, R., Waheed, A., Hasilik, A., and von Figura, K., 1982, Synthesis of phosphorylated recognition marker in lysosomal enzymes is located in the cis part of Golgi apparatus, J. Biol. Chem., 257: 5323–5325.PubMedGoogle Scholar
  45. Reitman, M.L., and Kornfeld, S., 1981, UDP-N-Acetylglucosamine: Glycoprotein N-acetylglucosamine-1-phosphotransferase, J. Biol. Chem., 256: 4275–4281.PubMedGoogle Scholar
  46. Reitman, A.L., Varki, A., and Kornfeld, S., 1981, Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5’-diphosphate-N-acetylglucosamine: Glycoprotein N-acetylglucosaminylphosphotransferase activity, J. Clin. Invest., 67: 1574–1579.PubMedCrossRefGoogle Scholar
  47. Robbins, A.R., Peng, S.S., and Marshall, J.L., 1983, Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis, J. Cell. Biol., 96: 1064–1071.PubMedCrossRefGoogle Scholar
  48. Rome, L.H., Weissman, B., and Neufeld, E.F., 1979, Direct demonstration of binding of a lysosomal enzyme, a-L-iduronidase, to receptors in cultured fibroblasts, Proc. Natl. Acad. Sci. USA, 76: 2331–2334.PubMedCrossRefGoogle Scholar
  49. Roth, J., and Berger, E.G., 1982, Immunocytochemical localization of galactosyltransferase in HeLa cells: Codistribution with thiamine pyrophosphatase in trans-Golgi cisternae, J. Cell Biol., 93: 223–229.PubMedCrossRefGoogle Scholar
  50. Sahagian, G.G., Distler, J., and Jourdian, G.W., 1981, Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicular ß-galactosidase, Proc. Natl. Acad. Sci. USA, 78: 4289–4293.PubMedCrossRefGoogle Scholar
  51. Sahagian, G.G., Distler, J., and Jourdian, G.W., 1982, Membrane receptor for phosphomannosyl residues, Methods Enzymol., 83: 392–396.PubMedCrossRefGoogle Scholar
  52. Sahagian, G.G., and Neufeld, E.F., 1983, Biosynthesis and turnover of the mannose 6-phosphate receptor in cultured Chinese hamster ovary cells, J. Biol. Chem., 257: 7121–7128.Google Scholar
  53. Sahagian, G.G., and Steer, C.J., 1985, Transmembrane orientation of the mannose 6-phosphate receptor in isolated clathrin-coated vesicles, J. Biol. Chem., 260: 9838–9842.Google Scholar
  54. Sly, W.S., Fischer, H.D., Gonzalez-Noriega, A., Grubb, J.H., and Natowicz, M., 1981, Role of the 6-phosphomannosyl-enzyme receptor in intracellular transport and adsorptive pinocytosis of lysosomal enzymes, in: “Basic Mechanisms of Cellular Secretion,” A.R. Hand and C. Oliver, eds., Academic Press, New York.Google Scholar
  55. Sly, W.S., Merion, M., Schlesinger, P., Moehring, J.M., and Moehring, T.J., 1983, Defective endosome acidification in mammalian cell mutants “cross-resistant” to certain toxins and viruses, in: “Protein Synthesis,” A.K. Abraham, T.S. Elkhorn, and I.F. Pryme, eds., The Humana Press, Clifton, NJ.Google Scholar
  56. Steiner, A.W., and Rome, L.H., 1982, Assay and purification of a solubilized membrane receptor that binds the lysosomal enzyme a-L-iduronidase, Arch. Biochem. Biophys., 214: 681–687.Google Scholar
  57. Tager, J.M., 1984, Biosynthesis and deficiency of lysosomal enzymes, Trends Biochem. Sci., 10:324–326.Google Scholar
  58. Takahashi, T., Schmidt, P.G., and Tang, J., 1983, Oligosaceharide units of lysosomal cathepsin D from porcine spleen, J. Biol. Chem., 258: 2819–2830.Google Scholar
  59. Tsuji, S., Choudary, P.V., Martin, B.M., Winfield, S., Barranger, J.A., and Ginns, E.J., 1986, Nucleotide sequence of cDNA containing the complete coding sequence for human lysosomal glucocerebrosiolase, J. Biol. Chem., 261: 50–53.PubMedGoogle Scholar
  60. van Elsen, A.F., and Leroy, J.G., 1979, Lysosomal enzymes in fibroblasts: Lectin affinities, in: “Models for the Study of Inborn Errors of Metabolism,” F.A. Hommes, ed., Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  61. Varki, A., and Kornfeld, S., 1981, Purification and characterization of rat liver a-N-acetylglucosaminyl phosphodiesterase, J. Biol. Chem., 256: 9937–9943.PubMedGoogle Scholar
  62. von Figura, K., Gieselmann, V., and Hasilik, A., 1984, Antibody to mannose 6-phosphate specific receptor induces receptor deficiency in human fibroblasts, EMBO J., 3: 1281–1286.Google Scholar
  63. von Figura, K., Gieselmann, V., and Hasilik, A., 1985, Mannose 6-phosphate specific receptor is a transmembrane protein with a C-terminal extension oriented towards the cytosol, Biochem. J., 225: 543–547.Google Scholar
  64. von Figura, K., and Weber, E., 1978, An alternative hypothesis of cellular transport of lysosomal enzymes in fibroblasts, Biochem. J., 176: 943–950.Google Scholar
  65. Vladutiu, G.D., 1983, Effect of the co-existence of galactosyl and phosphomannosyl residues of ß-hexosaminidase on the processing and transport of the enzyme in MLI fibroblasts, Biochim. Biophysica Acta, 760: 363–370.Google Scholar
  66. Waheed, A., Hasilik, A., and von Figura, K., 1981, Processing of the phosphorylated recognition marker in lysosomal enzymes, J. Biol. Chem., 256: 5717–5721.PubMedGoogle Scholar
  67. Waheed, A., Hasilik, A., and von Figura, K., 1982a, UDP-N-acetylglucosamine: Lysosomal enzyme precursor N-acetylglucosamine-1-phosphotransferase, J. Biol. Chem., 257:12322–12331.Google Scholar
  68. Waheed, A., Pohlmann, R., Hasilik, A., von Figura, K., van Elsen, A., and Leroy, J.G., 1982b, Deficiency of UDP-N-acetylglucosamine: Lysosomal enzyme N-acetylglucosamine-1-phosphotransferase in organs of I-cell patients, Biochem. Biophys. Res. Commun., 105: 1052–1058.Google Scholar
  69. Walter, P. and Lingappa, V.R., 1986, Mechanism of protein translocation across the endoplasmic reticulum membrane, Ann. Rev. Cell Biol., 2: 499–516PubMedCrossRefGoogle Scholar
  70. Willingham, M.C., Pastan, I.H., and Sahagian, G.G., 1983, Ultrastructural immunocytochemical localization of the phosphomannosyl receptor in Chinese hamster ovary ( CHO) cells, J. Histochem. Cytochem., 31: 1–11.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Catherine M. Nolan
    • 1
  • William S. Sly
    • 1
  1. 1.Biochemistry DepartmentSt. Louis University School of MedicineSt. LouisUSA

Personalised recommendations