Advertisement

Bacteriophage P1

  • Michael B. Yarmolinsky
  • Nat Sternberg
Part of the The Viruses book series (VIRS)

Abstract

We preface this review with a brief chronology of seminal P1 studies in order to illuminate the circumstances that molded the idiosyncratic development of P1 biology. The account that follows this brief historical preface deals first with Pl structure, second with successive stages in the life cycle of the phage, and third with comparative studies. It covers information available to us prior to November 1986 but additional material received throughout 1987 has also been inserted. Topics in P1 biology that have been treated in recent reviews include: the P1 genomic map (Yarmolinsky, 1987), transduction (Margolin, 1987; Masters, 1985), restriction-modification (Yuan, 1981; Krüger and Bickle, 1983), immunity to superinfection (Sternberg and Hoess, 1983; Scott, 1980), site-specific recombinations (Sadowski, 1986; Plasterk and Van de Putte, 1984; Sternberg and Hoess, 1983; Simon and Silverman, 1983), maintenance of the plasmid prophage (Scott, 1984; Sternberg and Hoess, 1983), and methylation-regulated gene expression and DNA processing (Sternberg, 1985; Marinus, 1984, 1987).

Keywords

Bacterial Chromosome Tail Fiber Plasmid Maintenance Transduce Phage Amber Mutation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, M., 1974, The replication of prophage P1 DNA, Mol. Gen. Genet. 132: 63–72.PubMedGoogle Scholar
  2. Abeles, A. L., 1986, P1 plasmid replication: Purification and DNA-binding activity of the replication protein, RepA, J. Biol. Chem. 261: 3548–3555.PubMedGoogle Scholar
  3. Abeles, A. L., and Austin, S. J., 1987, P1 plasmid replication requires methylated DNA, EMBO J. 6: 3185–3189.PubMedGoogle Scholar
  4. Abeles, A. L., Snyder, K. M., and Chattoraj, D. K., 1984, P1 plasmid replication: Replicon structure, J. Mol. Biol. 173: 307–324.PubMedGoogle Scholar
  5. Abeles, A. L., Friedman, S. A., and Austin, S. J., 1985, Partition of unit-copy miniplasmids to daughter cells: III. The DNA sequence and functional organization of the P1 partition region, I. Mol. Biol. 185:261–272. Erratum corrected in J. Mol. Biol. 189: 387.Google Scholar
  6. Abelson, J., and Thomas, C. A. Jr., 1966, The anatomy of the T5 bacteriophage DNA molecule, J. Mol. Biol. 18: 262–291.Google Scholar
  7. Abremski, K., and Hoess, R., 1983, Bacteriophage Pl site-specific recombination: Purification and properties of the Cre recombinase protein, /. Biol. Chem. 259: 1509–1519.Google Scholar
  8. Abremski, K., and Hoess, R., 1985, Phage Pl Cre-loxP site-specific recombination: Effects of DNA supercoiling on catenation and knotting of recombinant products. Mol. Biol. 184: 211–220.Google Scholar
  9. Abremski, K., Hoess, R., and Sternberg, N., 1983, Studies on the properties of P1 site-specific recombination: Evidence for topologically unlinked products following recombination, Cell 32: 1301–1311.PubMedGoogle Scholar
  10. Adams, J N., and Luria, S. E., 1958, Transduction by bacteriophage P1. Abnormal phage function in transducing particles, Proc. Natl. Acad. Sci. USA 44: 590–594.Google Scholar
  11. Alton, N. K., and Vapnek, D., 1979, Nucleotide sequence of analysis of the chloramphenicol resistance transposon Tn9, Nature 282: 864–869.PubMedGoogle Scholar
  12. Amati, P., 1962, Abortive infection of Pseudomonas aeruginosa and Serratia marcescens with coliphage P1, J. Bacteriol. 83: 433–434.PubMedGoogle Scholar
  13. Amati, P., 1965, A case of Pld1 prophage curable by acridine orange treatment, Atti Assoc. Genet. It. Pavia 10: 79–85.Google Scholar
  14. Amundsen, S. K., Taylor, A. F., Chaudhury, A. M., and Smith, G. R., 1986, recD, the gene for an essential third subunit of exonuclease. V. Proc. Natl. Acad. Sci. USA 83:5558–5562.Google Scholar
  15. Anderson, T. F., and Walker, D. H. Jr., 1960, Morphological variants of the bacteriophage P1, Science 132: 1488.Google Scholar
  16. Arber, W., 1960a, Polylysogeny for bacteriophage lambda, Virology 11: 250–272.Google Scholar
  17. Arber, W., 1960b, Transduction of chromosomal genes and episomes in Escherichia coli, Virology 11: 273–288.Google Scholar
  18. Arber, W., and Dussoix, D., 1962, Host specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage X. Mol. Biol. 5: 18–36.Google Scholar
  19. Arber, W., and Morse, M. L., 1965, Host specificity of DNA produced by Escherichia coli. VI. Effects on bacterial conjugation, Genetics 51: 137–148.PubMedGoogle Scholar
  20. Arber, W., and Wauters-Willems, D., 1970, Host specificity of DNA produced by Escherichia coli. XII. The two restriction and modification systems of strain 15T, Mol. Gen. Genet. 108: 203–217.PubMedGoogle Scholar
  21. Arber, W., Hattman, S., and Dussoix, D., 1963, On the host-controlled modification of bacteriophage X, Virology 21: 30–35.PubMedGoogle Scholar
  22. Arber, W., Yuan, R., and Bickle, T. A., 1975, Post-synthetic modification of macromolecules, FEBS Proc. 34: 3–22.Google Scholar
  23. Arber, W., Iida, S., June, H., Caspers, P., Meyer, J., and Hänni, C., 1978, Rearrangements of genetic material in Escherichia coli as observed on the bacteriophage P1 plasmid, Cold Spring Harbor Symp. Quant. Biol. 43: 1197–1208.Google Scholar
  24. Arber, W., Hümberlin, M., Caspers, P., Reif, H. J., lida, S., and Meyer, J., 1980, Spontaneous mutations in the Escherichia coli prophage P1 and IS-mediated processes, Cold Spring Harbor Symp. Quant. Biol. 45: 38–40.Google Scholar
  25. Arber, W., Sengstag, C., Caspers, P., and Dalrymple, B., 1985, Evolutionary relevance of genetic rearrangements involving plasmids, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 21–31, Plenum Press, New York.Google Scholar
  26. Austin, S., 1984, Bacterial plasmids that carry two functional centromere analogs are stable and are partitioned faithfully. Bacterial. 158: 742–745.Google Scholar
  27. Austin, S., and Abeles, A. L., 1983a, The partition of unit-copy mini-plasmids to daughter cells. I. P1 and F mini-plasmids contain discrete, interchangeable sequences sufficient to promote equipartition, J. Mol. Biol. 169: 353–372.Google Scholar
  28. Austin, S., and Abeles, A. L., 1983b, The partition of unit-copy mini-plasmids to daughter cells. II. The partition region of mini-P1 encodes an essential protein and a centromerelike site at which it acts. Mol. Biol. 169: 373–387.Google Scholar
  29. Austin, S., and Abeles, A., 1985, The partition functions of P1, P7 and F mini-plasmids, in: Plasmids in Bacteria (D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 215–226, Plenum Press, New York.Google Scholar
  30. Austin, S., and Wierzbicki, A., 1983, Two mini-F encoded proteins are essential for equipartition, Plasmid 10: 73–81.PubMedGoogle Scholar
  31. Austin, S., Sternberg, N., and Yarmolinsky, M., 1978, Miniplasmids of bacteriophage P1. I. Stringent plasmid replication does not require elements that regulate the lytic cycle, J. Mol. Biol. 120: 297–309.PubMedGoogle Scholar
  32. Austin, S., Ziese, M., and Sternberg, N., 1981, A novel role for site-specific recombination in maintenance of bacterial replicons, Cell 25: 729–736.PubMedGoogle Scholar
  33. Austin, S., Hart, F., Abeles, A., and Sternberg, N., 1982, Genetic and physical map of a P1 miniplasmid. Bacteriol. 152: 63–71.Google Scholar
  34. Austin, S., Mural, R., Chattoraj, D., and Abeles, A., 1985, Trans-and cis-acting elements for the replication of P1 miniplasmids, J. Mol. Biol. 83: 195–202.Google Scholar
  35. Austin, S., Friedman, S., and Ludtke, D., 1986, The partition functions of three unit-copy plasmids can stabilize maintenance of plasmid pBR322 at low copy number. Bacterial. 168: 1010–1013.Google Scholar
  36. Bächi, B., and Arber, W., 1977, Physical mapping of Bg1II, BamHI, EcoRI, HindIII and Pstlrestriction fragments of bacteriophage Pl DNA, Mol. Gen. Genet. 153: 311–324.PubMedGoogle Scholar
  37. Bächi, B., Reiser, J., and Pirrotta, V., 1979, Methylation and cleavage sequences of the EcoP 1 restriction-modification enzyme, J. Mol. Biol. 128: 143–163.PubMedGoogle Scholar
  38. Bachmann, B., 1983, Linkage map of Escherichia coli K12, edition 7, Microbial. Rev. 47: 180–230.Google Scholar
  39. Backhaus, H., 1985, DNA packaging initiation of Salmonella bacteriophage P22: Determination of cut sites within the DNA sequence coding for gene 3. Viral. 55: 458–465.Google Scholar
  40. Bailone, A., Brandenburger, A., Levine, M., Pierre, M., Dutreix, M., and Devoret, R., 1984, Indirect SOS induction is promoted by ultraviolet light-damaged miniF and requires the miniF lynA locus, 1. Mol. Biol. 179: 367–390.Google Scholar
  41. Barbeyron, T., Kean, K., and Forterre, P., 1984, DNA adenine methylation of GATC se- quences appeared recently in the Escherichia colilineage. Bacterial. 160: 586–590.Google Scholar
  42. Baumstark, B. R., and Scott, J. R., 1980, The cl repressor of bactériophage P1. I. Isolation of the cl protein and determination of the P1 DNA region to which it binds, J. Mol. Biol. 140: 471–480.PubMedGoogle Scholar
  43. Baumstark, B. R., and Scott, J. R., 1987, The c4 gene of phage P1, Virology 156: 197–203.PubMedGoogle Scholar
  44. Baumstark, B. R., Lowery, K., and Scott, J. R., 1984, Location by DNA sequence analysis of copmutations affecting the number of plasmid copies of prophage P1, Mol. Gen. Genet. 194: 513–516.PubMedGoogle Scholar
  45. Baumstark, B. R., Stovall, S. R., and Ashkar, S., 1987, Interaction of the Plcl repressor with P1 DNA. Localization of repressor binding sites near the cl gene, Virology, 156: 404–413.PubMedGoogle Scholar
  46. Benbow, R. M., Zuccarelli, A. J., and Sinsheimer, R. L., 1974, A role for single stranded breaks on bacteriophage X174 genetic recombination, J. Mol. Biol. 88: 629–665.PubMedGoogle Scholar
  47. Bender, R. A., and Sambucetti, L. C., 1983, Recombination-induced suppression of cell division following P1-mediated generalized transduction in Klebsiella aerogenes, Mol. Gen. Genet. 189: 263–268.PubMedGoogle Scholar
  48. Bergquist, P., Saadi, S., and Maas, W. K., 1986, Distribution of basic replicons having homology with RepFIA, RepFIB, and RepFIC among IncFI group plasmids, Plasmid 15: 19–34.PubMedGoogle Scholar
  49. Bertani, L. E., and Six, E. W., 1988, The P2-like phages and their parasite, P4, in: The Bacteriophages( R. Calendar, ed.), Vol. 2, pp. 73–143, Plenum, New York.Google Scholar
  50. Bertani, G., 1951, Studies in lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli, J. Bacteriol. 62: 293–300.PubMedGoogle Scholar
  51. Bertani, G., 1958, Lysogeny, Adv. Virus Res. 5: 151–193.Google Scholar
  52. Bertani, G., and Nice, S. J., 1954, Studies on lysogenesis. II. The effect of temperature on the lysogenization of Shigella dysenteriaewith phage PI, /. Bacteriol. 67: 202–209.Google Scholar
  53. Beyersmann, D., and Schuster, H., 1971, DNA synthesis in P1 infected E. colimutants temperature-sensitive in DNA replication, Mol. Gen. Genet. 114: 173–176.Google Scholar
  54. Bex, F., Karoui, H., Rokeach, L., Drèze, P., Garcia, L., and Couturier, M., 1983, Mini-F encoded proteins: Identification of a new 10.5 kilodalton species, EMBO J. 2: 1853–1861.PubMedGoogle Scholar
  55. Black, L. W., and Showe, M. K., 1983, Morphogenesis of the T4 head, in: Bacteriophage T4( C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget, eds.), pp. 219–245, American Society for Microbiology, Washington.Google Scholar
  56. Boice, L. B., and Luria, S. E., 1963, Behavior of prophage P1 in bacterial matings. I. Transfer of the defective prophage Pl dl, Virology 20: 147–157.PubMedGoogle Scholar
  57. Borek, E., and Ryan, A., 1958, The transfer of irradiation-elicited induction in a lysogenic organism. Proc. Natl. Acad. Sci. USA 44: 374–377.PubMedGoogle Scholar
  58. Bomhoeft, J. W., and Stodolsky, M., 1981, Lytic cycle replicative forms of bacteriophages P1 and Pldl concatemer forms, Virology 112: 518–528.Google Scholar
  59. Botstein, D., Waddell, C. H., and King, J, 1973, Mechanism of head assembly and DNA encapsidation in Salmonellaphage P22. I. Genes, proteins, structures, and DNA maturation, J. Mol. Biol. 80: 669–695.PubMedGoogle Scholar
  60. Botstein, D., Lew, K., Jarvik, V., and Swanson, C. Jr., 1975, Role of antirepressor in the bipartite control of repression and immunity by bacteriophage P22. Mol. Biol. 91: 439–462.Google Scholar
  61. Brandenburger, A., Bailone, A., Lévine, A., and Devoret, R., 1984, Gratuitous induction, J. Mol. Biol. 179: 571–576.PubMedGoogle Scholar
  62. Braun, R. E., and Wright, A., 1986, DNA methylation differentially enhances the expression of one of the two E. coli dnaApromoters in vivoand in vitro, Mol. Gen. Genet. 202: 246–250.PubMedGoogle Scholar
  63. Briaux, S., Gerbaud, G., and Jaffé-Brachet, A., 1979, Studies of a plasmid coding for tetracycline resistance and hydrogen sulfide production incompatible with the pro-phage P1, Mol. Gen. Genet. 170: 319–325.PubMedGoogle Scholar
  64. Briaux-Gerbaud, S., Gerbaud, G., and Jaffé-Brachet, A., 1981, Transposition of a tetracycline-resistance determinant (Tn1523) and cointegration events mediated by the pIP231 plasmid in Escherichia coli, Gene 15: 139–149.PubMedGoogle Scholar
  65. Brockes, J. P., 1973, The DNA modification enzyme of bacteriophage Pl: Subunit structure, Biochem. I. 133: 629–633.Google Scholar
  66. Brockes, J. P., Brown, P. R., and Murray, K., 1974, Nucleotide sequences at the sites of action of the deoxyribonucleic acid modification enzyme of bacteriophage P1, /. Mol. Biol. 88: 437–443.Google Scholar
  67. Burck, C., Shapiro, J. A., and Hauer, B., 1984, The p CM system: Phage immunity-specific incompatibility with IncP-1 plasmids, Mol. Gen. Genet. 194: 340–342.PubMedGoogle Scholar
  68. Campbell, A. M., 1969, The Episomes, Harper and Row, New York, pp. 13, 162.Google Scholar
  69. Capage, M. A., and Scott, J. R., 1983, SOS induction by P1 Km miniplasmids, J. Bacteriol. 155: 473–480.PubMedGoogle Scholar
  70. Capage, M. A., Goodspeed, J. K., and Scott, J. R., 1982, Incompatibility group Y member relationships: pIP231 and plasmid prophages Pl and P7, Plasmid 8: 307–311.PubMedGoogle Scholar
  71. Casjens, S., and Huang, W. M., 1982, Initiation of sequential packaging of bacteriophage P22 DNA. Mol. Biol. 157: 287–298.Google Scholar
  72. Caspar, D. L. D., and Klug, A., 1962, Physical principles in the construction of regular viruses, Cold Spring Harbor Symp. Quant. Biol. 27: 1–24.PubMedGoogle Scholar
  73. Chattoraj, D., Cordes, K., and Abeles, A., 1984, Plasmid Pl replication: Negative control by repeated DNA sequences, Proc. Natl. Acad. Sci. LISA 81: 6456–6460.Google Scholar
  74. Chattoraj, D. K., Abeles, A. L., and Yarmolinsky, M. B., 1985a, P1 plasmid maintenance: A paradigm of precise control, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 355–381, Plenum Press, New York.Google Scholar
  75. Chattoraj, D. K., Abeles, A. L., and Yarmolinsky, M. B., 1985a, P1 plasmid maintenance: A paradigm of precise control, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 355–381, Plenum Press, New York.Google Scholar
  76. Chattoraj, D. K., Mason, R. J., and Wickner, S. H., 1988, Mini-P1 plasmid replication: The autoregulation-sequestration paradox, Cell52 (in apress).Google Scholar
  77. Chattoraj, D. K., Snyder, K. M., and Abeles, A. L., 1985h, PI plasmid replication: Multiple functions of RepA protein at the origin, Proc. Natl. Acad. Sci. USA 82: 2588–2592.Google Scholar
  78. Chattoraj, D. K., Pal, S. K., Swack, J. A., Mason, R. J., and Abeles, A. L., 1985c, An auto-regulatory protein is required for P1 replication, in: Sequence Specificity in Transcription and Translation, UCLA Symposia on Molecular and Cellular Biology, New Series ( R. Calendar and L. Gold, eds.), Vol. 30, pp. 271–280, Aan R. Liss, New York.Google Scholar
  79. Chelala, C. A., and Margolin, P., 1974, Effects of deletions on co-transduction linkage in Salmonella typhimurium. Evidence that bacterial chromosome deletions affect the formation of transducing DNA fragments, Mol. Gen. Genet. 131: 97–112.PubMedGoogle Scholar
  80. Chesney, R. H., and Adler, E., 1982, Chromosomal location of attP7, the recA-independent P7 integration site used in the suppression of Escherichia coli dnaAmutations, J. Bacteriol. 150: 1400–1404.PubMedGoogle Scholar
  81. Chesney, R. H., and Scott, J. R., 1975, Superinfection immunity and prophage repression in phage P1. II. Mapping of the immunity difference and ampicillin resistance loci of phage P1 and 49AMP, Virology 67: 375–384.PubMedGoogle Scholar
  82. Chesney, R. H., and Scott, J. R., 1978, Suppression of a thermosensitive dnaAmutation of Escherichia coliby bacteriophage Pl and P7, Plasmid 1: 145–163.PubMedGoogle Scholar
  83. Chesney, R. H., Vapnek, D., and Scott, J. R., 1978, Site-specific recombination leading to the integration of phages P1 and P7, Cold Spring Harbor Symp. Quant. Biol. 43: 1147–1150.Google Scholar
  84. Chesney, R. H., Scott, J. R., and Vapnek, D., 1979, Integration of the plasmid prophages P1 and P7 into the chromosome of Escherichia coli, J. Mol. Biol. 130: 161–173.PubMedGoogle Scholar
  85. Chow, L. T., and Bukhari, A. I., 1976, The invertible DNA segments of coliphage Mu and coliphage P1 are identical, Virology 74: 242–248.PubMedGoogle Scholar
  86. Chow, L. T., Broker, T. R., Kahmann, R., and Kamp, D., 1978, Comparison of the G DNA inversion in bacteriophages Mu, P1 and P7, in: Microbiology-1978( D. Schlessinger, ed.), pp. 55–56, American Society for Microbiology, Washington.Google Scholar
  87. Churchward, G., Linder, P., and Caro, L., 1983, The nucleotide sequence of replication and maintenance functions encoded by plasmid pSC101, Nucleic Acids Res. 11: 5645–5659.PubMedGoogle Scholar
  88. Clowes, R. C., 1972, Molecular structure of bacterial plasmids, Bacteriol. Rev. 36: 361–405.PubMedGoogle Scholar
  89. Coetzee, J. N., Datta, N., and Hedges, R. W., 1972, R factors from Proteus rettgeri, J. Gen. Microbiol. 72: 543–552.PubMedGoogle Scholar
  90. Cohen, A., and Clark, A. J., 1986, Synthesis of linear plasmid multimers in Escherichia coli, J. Bacteriol. 167: 327–335.PubMedGoogle Scholar
  91. Cohen, G., 1983, Electron microscopy study of early lytic replication forms of bacteriophage P1 DNA, Virology 131: 159–170.PubMedGoogle Scholar
  92. Cowan, J. A., and Scott, J. R., 1981, Incompatibility among group Y plasmids, Plasmid 6: 202–221.PubMedGoogle Scholar
  93. Cress, D. E., and Kline, B. C., 1976, Isolation and characterization of Escherichia colichromosomal mutants affecting plasmid copy number, /. Bacteriol. 125: 635–642.Google Scholar
  94. D’Ari, R., 1977, Effects of mutations in the immunity system of bacteriophage Pl. Virol. 23: 467–475.Google Scholar
  95. D’Ari, R., and Huisman, O., 1982, DNA replication and indirect induction of the SOS response in Escherichia coli, Biochimie 64: 623–627.PubMedGoogle Scholar
  96. D’Ari, R., Jaffé-Brachet, A., Touati-Schwartz, D., and Yarmolinsky, M., 1975, A dnaB analog specified by bacteriophage P1, I. Mol. Biol. 94: 341–366.Google Scholar
  97. Bruijn, F. J., and Bukhari, A. I., 1978, Analysis of transposable elements inserted in the genomes of bacteriophages Mu and P1, Gene 3: 315–331.PubMedGoogle Scholar
  98. Delhalle, E., 1973, Restriction et modification de bactériophages par Escherichia coliK12 impliquant un prophage Pl cryptique associé à différents plasmides, Ann. Microbiol. (Paris) 124A: 173–178.Google Scholar
  99. Devlin, B. H., Baumstark, B. R., and Scott, J. R., 1982, Superimmunity: Characterization of a new gene in the immunity region of P1, Virology 120: 360–375.PubMedGoogle Scholar
  100. Dower, N. A., and Stahl, F. W., 1981, x activity during transduction-associated recombination, Proc. Natl. Acad. Sci. USA 78:7033–7037.Google Scholar
  101. Dreiseikelmann, B., Velleman, M., and Schuster, H., 1988, The clrepressor of bacteriophage Pl. Isolation and characterization of the repressor protein, J. Biol. Chem. 263: 1391–1397.PubMedGoogle Scholar
  102. Dunn, T., Hahn, S., Ogden, S., and Schlief, R., 1984, An operator at —280 base pairs that is required for repression of araBADoperon promoter: Addition of DNA helical turns between the operator and promoter cyclically hinders repression, Proc. Natl. Acad. Sci. USA 81: 5017–5020.PubMedGoogle Scholar
  103. Dussoix, D., and Arber, W., 1962, Host specificity of DNA produced by Escherichia coliII. Control over acceptance of DNA from infecting phage X. I. Mol. Biol. 5: 37–49.Google Scholar
  104. Ebel-Tsipis, J., Fox, M. S., and Botstein, D., 1972, Generalized transduction by bacteriophage P22 in Salmonella typhimurium. II. Mechanism of integration of transducing DNA, J. Mol. Biol. 71: 449–469.PubMedGoogle Scholar
  105. Edelbluth, C., Lanka, E., Von der Hude, W., Mikolajczyk, M., and Schuster, H., 1979, Association of the prophage Plbanprotein with the dnaBprotein of Escherichia coli. Overproduction of banprotein by a Plbac crrmutant, Eur. J. Biochem. 94: 427–435.PubMedGoogle Scholar
  106. Eichenlaub, R., Wehlmann, H., and Ebbers, J., 1981, Plasmid mini-F encoded functions involved in replication and incompatibility, in: Molecular Biology, Pathogenicity and Ecology of Bacterial Plasmids(S. B. Levy, E. L. Koenig, and R. C. Clowes, eds.), pp. 327336, Plenum Press, New York.Google Scholar
  107. Eliason, J. L., and Sternberg, N., 1987, Characterization of the binding sites of clrepressor of bacteriophage Pl: evidence for multiple asymmetric sites, J. Mol. Biol., 198: 281–293.PubMedGoogle Scholar
  108. Engelberg-Kulka, H., 1979, The requirement of nonsense suppression for the development of several phages, Mol. Gen. Genet. 170: 155–159.PubMedGoogle Scholar
  109. Feiss, M., Widner, W., Miller, G., Johnson, G., and Christiansen, S., 1983a, Structure of bacteriophage X cohesive end site: Location of the sites of terminase binding (cosB)and nicking (cosN), Gene 24: 207–218.Google Scholar
  110. Feiss, M., Kobayashi, I., and Widner, W., 1983b, Separate sites for binding and nicking of bacteriophage X DNA by terminase, Proc. Natl. Acad. Sci. USA 80: 955–959.Google Scholar
  111. Fortson, M. R., Scott, J. R., Yun, T., and Vapnek, D., 1979, Map location of the kanamycin resistance determinant in PlKmo, Virology 96: 332–334.PubMedGoogle Scholar
  112. Franklin, N. C., 1969, Mutation in gal U gene of E. coli blocks phage P1 infection, Virology 38: 189–191.Google Scholar
  113. Friedman, D. I., Plantefaber, L. C., Olson, E. J., Carver, D., O’Dea, M. H., and Gellert, M., 1984, Mutations in the DNA gyrBgene that are temperature sensitive for lambda site-specific recombination, Mu growth, and plasmid maintenance, J. Bacteriol. 157: 490–497.PubMedGoogle Scholar
  114. Friedman, S. A. and Austin, S. J., 1988, The PI plasmid-partition system synthesizes two essential proteins from an autoregulated operon, Plasmid (in apress).Google Scholar
  115. Friedman, S., Martin, K., and Austin, S., 1986, The partition system of the P1 plasmid, in: Banbury Report 24. Antibiotic Resistance Genes: Ecology, Transfer, and Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 285–294.Google Scholar
  116. Froehlich, B. J., Tatti, K., and Scott, J. R., 1983, Evidence for positive regulation of plasmid prophage P1 replication: Integrative suppression by copy mutants, I. Bacteriol. 156: 205–211.Google Scholar
  117. Froehlich, B. J., Watkins, C., and Scott, J. R., 1986, IS1-dependent generation of high copy number replicons from P1ApCm as a mechanism of gene amplification. Bacterial. 166: 609–617.Google Scholar
  118. Fuller, R. S., Funnel), B., and Kornberg, A., 1984, The DNA protein complex with the E. colichromosomal replication origin (oriC)and other DNA sites, Cell 38: 889–900.PubMedGoogle Scholar
  119. Fuller, R. S., Kaguni, J. M., and Kornberg, A., 1981, Enzymatic replication of the origin of the Escherichia colichromosome, Proc. Natl. Acad. Sci. USA 78: 7370–7374.PubMedGoogle Scholar
  120. Funnell, B. E., 1988, Mini-P1 plasmid partitioning: Excess parB protein destabilizes plasmids containing the centromere parS, I. Bacteriol. 170: 954–960.Google Scholar
  121. Gellert, M., 1981, DNA topoisomerases, Anna. Rev. Biochern. 50: 879–910.Google Scholar
  122. German, M., and Syvanen, M., 1982, Incompatibility between bacteriophage X and the sex factor F, Plasmid 8: 207–210.PubMedGoogle Scholar
  123. Gill, G. S., Hull, R. C., and Curtiss, R. III, 1981, Mutator bacteriophage D108 and its DNA: An electron microscopic characterization, J. Virol. 37: 420–430.PubMedGoogle Scholar
  124. Glover, S. W., and Colson, C., 1969, Genetics of host controlled restriction and modification in Escherichia coli, phage P1 transduction, Genet. Res. 13: 227–240.PubMedGoogle Scholar
  125. Glover, S. W., Schell, J., Symonds, N., and Stacey, K. A., 1963, The control of host-induced modification by phage P1, Genet. Res. 4: 480–482.Google Scholar
  126. Godard, C., Beumer-Jochmans, M. P., and Beumer, J., 1971, Apparition des sensibilités aux phages T et à des colicines chez Shigella flexneriF6S survivant à l’infection par un phage Lisbonne. 1. Modification des propriétés biologiques de surface, Ann. Inst. Pasteur 120: 475–489.Google Scholar
  127. Goldberg, R. B., Bender, R. A., and Streicher, S. L., 1974, Direct selection of phage P1-sensitive mutants of enteric bacteria. Bacteriol. 118: 810–814.Google Scholar
  128. Golub, E. I., and Low, K. B., 1985, Conjugative plasmids of enteric bacteria from many different incompatibility groups have similar genes for single-stranded DNA-binding proteins, J. Bacteriol. 162: 235–241.PubMedGoogle Scholar
  129. Golub, E. I., and Low, K. B., 1986, Unrelated conjugative plasmids have sequences which are homologous to the leading region of the F factor. Bacteriol. 166: 670–672.Google Scholar
  130. Gottesman, S., and Zipser, D., 1978, Deg phenotype of E. coli Ionmutants. Bacteriol. 133: 844–851.Google Scholar
  131. Gross, J., and Englesberg, E., 1959, Determination of the order of mutational sites governing L-arabinose utilization in Escherichia coliB/r by transduction with phage Plbt, Virology 9: 314–331.PubMedGoogle Scholar
  132. Haberman, A., 1974, The bacteriophage P1 restriction endonuclease, /. Mol. Biol. 89: 545–563.Google Scholar
  133. Hadi, S. M., Bächi, B., Iida, S., and Bickle, T. A., 1983, DNA restriction-modification enzymes of phage Pl and plasmid pl5B. Mol. Biol. 165: 19–34.Google Scholar
  134. Hakkaart, M. J. J., Van den Elzen, P. J. M., Veltkamp, E., and Nijkamp, H. J. J., 1984, Maintenance of multicopy plasmid C1oDF13 in E. colicells: Evidence for site-specific recombination at parB, Cell 36: 203–209.PubMedGoogle Scholar
  135. Hanks, M. C. and Masters, M., 1987, Transductional analysis of chromosome replication time, Mol. Gen. Genet. 210: 288–293.PubMedGoogle Scholar
  136. Hansen, E. B., and Yarmolinsky, M. B., 1986, Host participation in plasmid maintenance: Dependence upon dnaAof replicons derived from Pl and F, Proc. Natl. Acad. Sci. USA 83: 4423–4427.PubMedGoogle Scholar
  137. Hansen, F. G., Hansen, E. B., and Atlung, T., 1982, The nucleotide sequence of the dnaAgene promoter and of the adjacent rpmHgene, coding for the ribosomal protein L34, of Escherichia coli, EMBO J. 1: 1043–1048.PubMedGoogle Scholar
  138. Harriman, P., 1971, Appearance of transducing activity in P1 infected Escherichia coli, Virology 45: 324–325.PubMedGoogle Scholar
  139. Harriman, P. D., 1972, A single-burst analysis of the production of P1 infectious and transducing particles, Virology 48: 595–600.PubMedGoogle Scholar
  140. Hattman, S., Brooks, J. E., and Masurekar, M., 1978, Sequence specificity of the Pl modification methylase (M.EcoPl) and the DNA methylase (M.Ecodam) controlled by the Escherichia coli damgene, J. Mol. Biol. 126: 367–380.PubMedGoogle Scholar
  141. Hawley, D. K., and McClure, W. R., 1983, Compilation and analysis of Escherichia coli promoter DNA sequences, Nucleic Acids Res. 11: 2237–2255.PubMedGoogle Scholar
  142. Hay, N., and Cohen, G., 1983, Requirement of E. coli DNA synthesis functions for the lytic replication of bacteriophage P1, Virology 131: 193–206.PubMedGoogle Scholar
  143. Hayakawa, Y., Murotsu, T., and Matsubara, K., 1985, Mini-F protein that binds to a unique region for partition of mini-F plasmid DNA, J. Bacteriol. 163: 349–354.PubMedGoogle Scholar
  144. Hayes, W., 1953, Observations on a transmissible agent determining sexual differentiation in Bact. coli, J. Gen. Microbiol. 8: 72–88.PubMedGoogle Scholar
  145. Hays, J. B., and Boehmer, S., 1978, Antagonists of DNA gyrase inhibit repair and recombination of UV-irradiated phage lambda, Proc. Natl. Acad. Sci. USA 75: 4125–4129.PubMedGoogle Scholar
  146. Hedges, R. W., Jacob, A. E., Barth, P. T., and Grinter, N. J., 1975, Compatibility properties of P1 and 4AMP prophages, Mol. Gen. Genet. 141: 263–267.Google Scholar
  147. Heilmann, H., Reeve, J. N., and Puhler, A., 1980a, Identification of the repressor and repressor bypass (antirepressor) polypeptides of bacteriophage P1 synthesized in infected minicells, Mol. Gen. Genet. 178: 149–154.Google Scholar
  148. Heilmann, H., Burkardt, H. J., Puhler, A., and Reeve, J. N., 1980b, Transposon mutagenesis of the gene encoding the bacteriophage P1 restriction endonuclease. Co-linearity of the gene and gene product, J. Mol. Biol. 144: 387–396.Google Scholar
  149. Heisig, A., Severin, I., Seefluth, A.-K., and Schuster, H., 1987, Regulation of the ban gene containing operon of prophage P1, Mol. Gen. Genet. 206: 368–376.PubMedGoogle Scholar
  150. Hertman, I, and Luria, S. E., 1967, Transduction studies on the role of a reck gene in the ultraviolet induction of prophage lambda, J. Mol. Biol. 23: 117–133.PubMedGoogle Scholar
  151. Hertman, I., and Scott, J. R., 1973, Recombination of phage P1 in recombination deficient hosts, Virology 53: 468–470.PubMedGoogle Scholar
  152. Hiestand-Nauer, R., and Iida, S., 1983, Sequence of the site-specific recombinase gene cinand of its substrates serving in the inversion of the C segment of bacteriophage P1, EMBO J. 2: 1733–1740.PubMedGoogle Scholar
  153. Hiraga, S., 1986, Mechanisms of stable plasmid inheritance, Adv. Biophys. 21: 91–103.PubMedGoogle Scholar
  154. Hiraga, S., Ogura, T., Mori, H., and Tanaka, M., 1985, Mechanisms essential for stable inheritance of mini-F plasmid, in: Plasmids in Bacteria, ( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 469–487, Plenum Press, New York.Google Scholar
  155. Hiraga, S., Jaffe, A., Ogura, T., Mori, H., and Takahashi, H., 1986, F plasmid ccdmechanism in Escherichia coli, J. Bacteriol. 166: 100–104.PubMedGoogle Scholar
  156. Hochman, L., Segev, N., Sternberg, N., and Cohen, G., 1983, Site-specific recombinational circularization of bacteriophage Pl DNA, Virology 131: 11–17.PubMedGoogle Scholar
  157. Hochschild, A., and Ptashne, M., 1986, Cooperative binding of X repressors to sites separated by integral turns of the DNA helix, Cell 44: 681–687.PubMedGoogle Scholar
  158. Hoess, R., and Abremski, K., 1984, Interaction of the bacteriophage PI recombinase Cre with the recombining site IoxP, Proc. Natl. Acad. Sci. USA 81: 1026–1029.PubMedGoogle Scholar
  159. Hoess, R., and Abremski, K., 1985, Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system, J. Mol. Biol. 181: 351–362.PubMedGoogle Scholar
  160. Hoess, R. H., Ziese, M., and Sternberg, N., 1982, P1 site-specific recombination: Nucleotide sequence of the recombining sites, Proc. Natl. Acad. Sci. USA 79: 3398–3402.PubMedGoogle Scholar
  161. Hoess, R. H., Abremski, K., and Sternberg, N., 1984, The nature of the interaction of the P1 recombinase Cre with the recombining site loxP, Cold Spring Harbor Symp. Quant. Biol. 49: 761–769.PubMedGoogle Scholar
  162. Hoess, R. H., Wierzbicki, A., and Abremski, K., 1986, The role of the loxPspacer region in Pl site-specific recombination, Nucleic Acids Res. 14: 2287–2300.PubMedGoogle Scholar
  163. Hooper, D. C., Wolfson, J. S., McHugh, G. L., Swartz, M. D., Tung, C., and Swartz, M. N., 1984, Elimination of plasmid pMG110 from Escherichia coliby novobiocirt and other inhibitors of DNA gyrase, Antimicrob. Agents Chemother. 25: 586–590.PubMedGoogle Scholar
  164. Hooper, I., Woods, W. H., and Egan, B., 1981, Coliphage 186 replication is delayed when the host cell is UV irradiated before induction, J. Virol. 40: 341–349.PubMedGoogle Scholar
  165. Horiuchi, K., and Zinder, N., 1972, Cleavage of bacteriophage fl DNA by the restriction enzyme of Escherichia coliB, Proc. Natl. Acad. Sci. USA 69: 3220–3224.PubMedGoogle Scholar
  166. Hu, M., and Deonier, R. C., 1981, Mapping of ISl elements flanking the argFgene region on the Escherichia coliK12 chromosome, Mol. Gen. Genet. 181: 222–229.PubMedGoogle Scholar
  167. Huber, H. E., Iida, S., and Bickle, T. A., 1985a, Expression of the bacteriophage P1 cinrecombinase gene from its own and heterologous promoters, Gene 34: 63–72.Google Scholar
  168. Huber, H. E., Iida, S., Arber, W., and Bickle, T. A., 1985b, Site-specific DNA inversion is enhanced by a DNA sequence element in cis, Proc. Natl. Acad. Sci. USA 82: 3776–3780.Google Scholar
  169. Hughes, P., Squali-Houssaini, F.-Z., Forterre, P., and Kohiyama, M., 1984, In vitroreplication of a dammethylated and non-methylated on-C plasmid, J. Mol. Biol. 176: 155–159.Google Scholar
  170. Huisman, O., D’Ari, R., and George, J., 1980, Inducible sfidependent division inhibition in Escherichia coli, Mol. Gen. Genet. 177: 629–636.PubMedGoogle Scholar
  171. Hmberlin, M., Suri, B., Rao, D. N., Hornby, D. P., Eberle, H., Pripfl, T., and Bickle, T. A., 1988, The type III DNA restriction and modification systems EcoP1 and EcoP15. Nucleotide sequence of the EcoP1 operon and of the EcoP15 gene, J. Mol. Biot in apress).Google Scholar
  172. Iida, S., 1984, Bacteriophage P1 carries two related sets of genes determining its host range in the invertible C segment of its genome, Virology 134: 421–434.PubMedGoogle Scholar
  173. Iida, S., and Arber, W., 1977, Plaque forming specialized transducing phage P1: Isolation of PICmSmSu, a precursor of P1 Cm, Mol. Gen. Genet. 153: 259–269.PubMedGoogle Scholar
  174. Iida, S., and Arber, W., 1979, Multiple physical differences in the genome structure of functionally related bacteriophages P1 and P7, Mol. Gen. Genet. 173: 249–261.PubMedGoogle Scholar
  175. Iida, S., and Arber, W., 1980, On the role of IS1 in the formation of hybrids between bacteriophage P1 and the R plasmid NR1, Mol. Gen. Genet. 177: 261–270.PubMedGoogle Scholar
  176. Iida, S., and Hiestand-Nauer, R., 1986, Localized conversion at the crossover sequences in the site-specific DNA inversion system of bacteriophage P1, Cell 45: 71–79.PubMedGoogle Scholar
  177. Lida, S., and Hiestand-Nauer, R., 1987, Role of the central dinucleotide at the crossover sites for the selection of quasi sites in DNA inversion mediated by the site-specific Cin recombinase of phage P1, Mol. Gen. Genet. 208: 464–468.Google Scholar
  178. Iida, S., Meyer, J., and Arber, W., 1978, The insertion element Isl is a natural constituent of coliphage P1 DNA, Plasmid 1: 357–365.PubMedGoogle Scholar
  179. Iida, S., Meyer, J., and Arber, W., 1981, Cointegrates between bacteriophage P1 DNA and plasmid pBR322 derivatives suggest molecular mechanisms for P1-mediated transduction of small plasmids, Mol. Gen. Genet. 184: 1–10.PubMedGoogle Scholar
  180. Iida, S., Meyer, J., Kennedy, K. E., and Arber, W., 1982, A site-specific conservative recombination system carried by bacteriophage Pl. Mapping the recombinase gene cinand the crossover sites cixfor the inversion of the C segment, EMBO J. 1: 1445–1453.PubMedGoogle Scholar
  181. Iida, S., Meyer, J., Bächi, B., Stâlhammer-Carlemalm, M., Schrickel, S., Bickle, T. A., and Arber, W., 1983, DNA restriction-modification genes of phage P1 and plasmid p15B. Structure and in vitrotranscription, J. Mol. Biol. 165: 1–18.PubMedGoogle Scholar
  182. Iida, S., Huber, H., Hiestand-Nauer, R., Meyer, J., Sickle, T. A., and Arber, W., 1984, The bacteriophage P 1 site-specific recombinase CM: Recombination events and DNA recognition sequences, Cold Spring Harbor Symp. Quant. Biol. 49: 769–777.PubMedGoogle Scholar
  183. Iida, S., Meyer, J., and Arber, W., 1985a, Bacteriophage P1 derivatives unaffected in their growth by a large inversion or by IS insertions at various locations, J. Gen. Microbiol. 131: 129–134.Google Scholar
  184. Iida, S., Hiestand-Nauer, R., Meyer, J., and Arber, W., 1985b, Crossover sites cixfor inversion of the invertible DNA segment C on the bacteriophage P7 genome, Virology 143: 347–351.Google Scholar
  185. Iida, S., Streift, M. B., Bickle, T. A., and Arber, W., 1987, Two DNA anti-restriction systems of bacteriophage Pl, darAand darB: Characterization of darA-phage, Virology, 157: 156–166.PubMedGoogle Scholar
  186. Ikeda, H., and Tomizawa, J.-I., 1965a, Transducing fragments in generalized transduction by P1. I. Molecular origin of the fragments, J. Mol. Biol. 14: 85–109.Google Scholar
  187. Ikeda, H., and Tomizawa, J.-I., 1965b, Transducing fragments in generalized transduction by phage Pl. II. Association of DNA and protein in the fragments, J. Mol. Biol. 14: 110–119.Google Scholar
  188. Ikeda, H., and Tomizawa, J.-I., 1965c, Transducing fragments in generalized transduction by phage P1. III. Studies with small phage particles. J. Mol. Biol. 14: 120–129.Google Scholar
  189. Ikeda, H., and Tomizawa, J.-I., 1968, Prophage P1, an extrachromosomal replication unit, Cold Spring Harbor Symp. Quant. Biol. 33: 791–798.PubMedGoogle Scholar
  190. Ikeda, H., Inuzuka, M., and Tomizawa, J.-I., 1970, P1-like plasmid in Escherichia coli, J. Mol. Biol. 50: 457–470.PubMedGoogle Scholar
  191. Inselberg, J., 1966, Phage P1 modification of bacterial DNA studied by generalized transduction, Virology 30: 257–265.Google Scholar
  192. Inselberg, J., 1968, Physical evidence for the integration of prophage P1 into the Escherichia colichromosome, J. Mol. Biol. 31: 553–560.Google Scholar
  193. Itoh, Y., Kamio, Y., and Terawaki, Y., 1987, The essential DNA sequence for the replication of Rtsl, J. Bacteriol., 169: 1153–1160.PubMedGoogle Scholar
  194. Jacob, F., 1955, Transduction of lysogeny in Escherichia coli, Virology 1: 207–220.PubMedGoogle Scholar
  195. Jacob, F., and Wollman, E. L., 1959, The relationship between the prophage and the bacterial chromosome in lysogenic bacteria, in: Recent Progress in Microbiology (G. Tunevall, ed.), pp. 15–30. Charles C. Thomas, Springfield, IL.Google Scholar
  196. Jacob, F., and Wollman, E. L., 1961, Sexuality and the Genetics of Bacteria, Academic Press, New York.Google Scholar
  197. Jacob, F., Brenner, S., and Cuzin, F., 1963, On the regulation of DNA replication in bacteria, Cold Spring Harbor Symp. Quant. Biol. 28: 329–347.Google Scholar
  198. Jaffé, A., Ogura, T., and Hiraga, S., 1985, Effects of the ccdfunction of the F plasmid on bacterial growth, J. Bacteriol. 163: 841–849.PubMedGoogle Scholar
  199. Jaffé-Brachet, A., and Briaux-Gerbaud, S., 1981, Curing of P1 prophage from Escherichia coliK-12 recA(P1)lysogens superinfected with P1 bacteriophage, J. Virol. 37: 854–859.PubMedGoogle Scholar
  200. Jaffé-Brachet, A., and D’Ari, R., 1977, Maintenance of bacteriophage P1 plasmid, J. Virol. 23: 476–482.PubMedGoogle Scholar
  201. Johnson, B. F., 1982, Suppression of the lexC (ssbA)mutation of Escherichia coliby a mutant of bacteriophage P1, Mol. Gen. Genet. 186: 122–126.PubMedGoogle Scholar
  202. Johnson, R. C., Bruist, M. F., and Simon, M., 1986, Host protein requirements for in vivosite-specific DNA inversion, Cell 46: 531–539.PubMedGoogle Scholar
  203. Johnson, R. C., and Simon, M. I., 1985, Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer, Cell 41: 781–791.PubMedGoogle Scholar
  204. Kahmann, R., Rudt, F., Koch, C., and Mertens, G., 1985, G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor, Cell 41: 771–780.PubMedGoogle Scholar
  205. Kaiser, D., and Dworkin, M., 1975, Gene transfer to a myxobacterium by Escherichia coliphage P1, Science 187: 653–654.PubMedGoogle Scholar
  206. Kamio, Y., Tabuchi, A., Itoh, Y., Katagiri, H., and Terawaki, Y., 1984, Complete nucleotide sequence of mini-Rtsl and its copy mutant, J. Bacteriol. 158: 307–312.PubMedGoogle Scholar
  207. Kamp, D., Kahmann, R., Zipser, D., Broker, T. R., and Chow, L. T., 1978, Inversion of the G DNA segment of phage Mu controls phage infectivity, Nature 271: 577–580.PubMedGoogle Scholar
  208. Kamp, D., Kardas, E., Ritthaler, W., Sandulache, R., Schmucker, R., and Stem, B., 1984, Comparative analysis of invertible DNA in phage genomes, Cold Spring Harbor Symp. Quant. Biol. 49: 301–311.PubMedGoogle Scholar
  209. Karamata, D., 1970, Multiple density classes of phage P1 due to tetramer formation, Mol. Gen. Genet. 107: 243–255.Google Scholar
  210. Karoui, H., Bex, F., Drèze, P., and Couturier, M., 1983, Ham22, a mini-F mutation which is lethal to host cell and promotes recA-dependent induction of lambdoid prophage, EMBO J. 2: 1863–1868.PubMedGoogle Scholar
  211. Kass, L. R., and Yarmolinsky, M. B., 1970, Segregation of functional sex factor into mini-cells, Proc. Natl. Acad. Sci. USA 66: 815–822.PubMedGoogle Scholar
  212. Kennedy, K. E., Iida, S., Meyer, J., Stâlhammer-Carlemalm, M., Hiestand-Nauer, R., and Arber, W., 1983, Genome fusion mediated by the site-specific DNA inversion system of bacteriophage P1, Mol. Gen. Genet. 189: 413–421.PubMedGoogle Scholar
  213. Kline, B. C., 1985, A review of mini-F plasmid maintenance, Plasmid 14: 1–16.PubMedGoogle Scholar
  214. Kline, B. C., Miller, J. R., Cress, D. E., Wlodarszyk, M., Manis, J. J., and Otten, M. R., 1976, Non-integrated plasmid-chromosome complexes in Escherichia coli, J. Bacteriol. 127: 881–889.PubMedGoogle Scholar
  215. Komano, T., Kubo, A., Kayanuma, T., Furuichi, T., and Nisioka, T., 1986, Highly mobile DNA segment of Inela plasmid R64: A clustered inversion region, J. Bacteriol. 165: 94–100.PubMedGoogle Scholar
  216. Kondo, E., and Mitsuhashi, S., 1964, Drug resistance of enteric bacteria. IV. Active transducing bacteriophage P1CM produced by the combination of R-factor with bacteriophage P1, J. Bacteriol. 88: 1266–1276.PubMedGoogle Scholar
  217. Kondo, E., and Mitsuhashi, S., 1966, Drug resistance of enteric bacteria. VI. Introduction of bacteriophage P1CM into Salmonella typhi and formation of P1dCM and F-CM elements, J. Bacteriol. 91: 1787–1794.PubMedGoogle Scholar
  218. Kondo, E., Haapala, D. K., and Falkow, S., 1970, The production of chloramphenicol acetyltransferase by bacteriophage P1CM, Virology 40: 431–440.PubMedGoogle Scholar
  219. Konrad, E. B., 1977, Method for the isolation of Escherichia coli mutants with enhanced recombination between chromosomal duplications, J. Bacteriol. 130: 167–172.PubMedGoogle Scholar
  220. Krüger, D. H., and Bickle, T. A., 1983, Bacterial survival: Multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts, Microbiol. Rev. 47: 345–360.PubMedGoogle Scholar
  221. Kuner, J. M., and Kaiser, D., 1981, Introduction of transposon Tn5 into Myxococcusfor analysis of development and other nonselectable mutants, Proc. Natl. Acad. Sci. USA 78: 425–429.PubMedGoogle Scholar
  222. Kusukawa, N., Mori, H., Kondo, A., and Hiraga, S., 1987, Partitioning of the F plasmid: overproduction of an essential protein for partition inhibits plasmid maintenance, Mol. Gen. Genet. 208: 365–372.PubMedGoogle Scholar
  223. Kutsukake, K., and Iino, T., 1980, Inversions of specific DNA segments in flagellar phase variation of Salmonella and inversion systems of bacteriophages P1 and Mu, Proc. Natl. Acad. Sci. USA 77: 7338–7341.Google Scholar
  224. Lane, D., and Gardner, R. C., 1979, Second EcoRI fragment of F capable of self-replication, J. Bacteriol. 139: 141–151.PubMedGoogle Scholar
  225. Lane, D., Hill, D., Caughey, E., and Gunn, P., 1984, The mini-F primary origin. Sequence analysis and multiple activities, J. Mol. Biol. 180: 267–282.PubMedGoogle Scholar
  226. Lanka, E., and Schuster, H., 1970, Replication of bacteriophages in E. coli mutants thermosensitive in DNA synthesis, Mol. Gen. Genet. 106: 279–285.Google Scholar
  227. Lanka, E., Edelbluth, C., Schlicht, M., and Schuster, H., 1978a, Escherichia coli dnaB protein, J. Biol. Chem. 253: 5847–5851.Google Scholar
  228. Lanka, E., Mikolajczyk, M., Schlicht, M., and Schuster, H., 1978b, Association of the pro-phage Plban protein with the dnaB protein of Escherichia coli, J. Biol. Chem. 253: 4746–4753.Google Scholar
  229. Lanka, E., Schlicht, M., Mikolajczyk, M., Geschke, B., Edelbluth, C., and Schuster, H., 1978e, Suppression of E. coli dnaBmutants by prophage Plbac: A biochemical approach, in: DNA Synthesis: Present and Future (I. Molineux and M. Kohiyama, eds.), pp. 669–682, Plenum Press, New York.Google Scholar
  230. Lawton, W. D., and Molnar, D. M., 1972, Lysogenic conversion of Pasteurellaby Escherichia colibacteriophage P1CM, J. Virol. 9: 708–709.PubMedGoogle Scholar
  231. Lederberg, J., 1956, Linear inheritance in transductional clones, Genetics 41: 845–871.PubMedGoogle Scholar
  232. Lederberg, S., 1957, Suppression of the multiplication of heterologous bacteriophages in lysogenic bacteria, Virology 3: 496–513.PubMedGoogle Scholar
  233. Lee, H.-J., Ohtsubo, E., Deonier, R. C., and Davidson, N., 1974, Electron microscope hetero-duplex studies of sequence relations among plasmids of Escherichia coli. V. ilv+ deletion mutants of F14, J. Mol. Biol. 89: 585–597.PubMedGoogle Scholar
  234. Lennox, E. S., 1955, Transduction of linked genetic characters of the host by bacteriophage P1, Virology 1: 190–206.PubMedGoogle Scholar
  235. Leonard, A. C., Hucul, J. A., Helmstetter, C. E., 1982, Kinetics of mini-chromosome replication in Escherichia coli B/r, J. Bacteriol. 149: 499–507.PubMedGoogle Scholar
  236. Levine, M., Truesdale, S., Ramakrishnan, T., and Bronson, M. J., 1975, Dual control of lysogeny by phage P22, J. Mol. Biol. 91: 421–438.PubMedGoogle Scholar
  237. Lewin, R., 1984, Why is development so illogical? Science224:1327–1329. Lindberg, A. A., 1973, Bacteriophage receptors, Ann. Rev. Genet. 27: 205–241.Google Scholar
  238. Linder, P., Churchward, G., Yi-Yi, X. G. Y., and Caro, L., 1985, An essential replication gene, repA, of plasmid pSC101 is autoregulated, J. Mol. Biol. 181: 383–393.PubMedGoogle Scholar
  239. Linn, S., and Arber, W., 1968, Host specificity of DNA produced by Escherichia coliX. In vitrorestriction of phage fd replicative form, Proc. Natl. Acad. Sci. USA 59: 1300–1306.PubMedGoogle Scholar
  240. Little, J. N., and Mount, D. W., 1982, The SOS regulatory system of Escherichia coli, Cell 29: 11–13.PubMedGoogle Scholar
  241. Luderitz, O., Jann, K., and Wheat, R., 1968, Somatic and capsular antigens of gram-negative bacteria, Comprehensive Biochem. 26A: 105–228.Google Scholar
  242. Ludtke, D. N., and Austin, S. J., 1987, The plasmid-maintenance functions of P7 prophage, Plasmid, 18: 93–98.PubMedGoogle Scholar
  243. Luria, S. E., Adams, J. N., and Ting, R. C., 1960, Transduction of lactose-utilizing ability among strains of E. coliand Sh. dysenteriaeand the properties of the transducing phage particles, Virology 12: 348–390.PubMedGoogle Scholar
  244. Lyons, S. M., and Schendel, P. F., 1984, Kinetics of methylation in Escherichia coli K12, J. Bacteriol. 159: 421–423.PubMedGoogle Scholar
  245. MacHattie, L. A., and Jackowski, J. B., 1976, Physical structure and deletion effects of the chloramphenicol-resistance element, Tn9, in phage lambda, in: DNA Insertion Elements, Plasmids and Episomes( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 219–228, Cold Spring Harbor Laboratory, Cold Spring Harbor, NewYork.Google Scholar
  246. MacQueen, H. A., and Donachie, W. D., 1977, Intracellular localization and effects on cell division of a plasmid blocked in deoxyribonucleic acid replication, J. Bacteriol. 132: 392–397.PubMedGoogle Scholar
  247. Majumdar, A., and Adhya, S. L., 1984, Demonstration of two operator elements in gal: In vitro repressor binding studies, Proc. Natl. Acad. Sci. USA 81: 6100–6104.Google Scholar
  248. Margolin, P., 1987, Generalized transduction, in: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology(F. C. Neidhardt, ed.), American Society for Microbiology, Washington, Vol. 2, pp. 1154–1168.Google Scholar
  249. Marinus, M. G., 1984, Methylation of prokaryotic DNA, in: DNA Methylation( A Razin, M. Cedar, and A. Riggs, eds.), pp. 81–109, Springer-Verlag, New York.Google Scholar
  250. Marinus, M. G., 1987, DNA methylation in Escherichia coli, Ann. Rev. Genet. 21: 113–131.PubMedGoogle Scholar
  251. Martin, K. A., Friedman, S. A., and Austin, S. J., 1987, The partition site of the PI plasmid, Proc. Natl. Acad. Sci., USA 84: 8544–8547.Google Scholar
  252. Masters, M., 1977, The frequency of P1 transduction of the genes of Escherichia colias a function of chromosomal position: Preferential transduction of the origin of replication, Mol. Gen. Genet. 155: 197–202.PubMedGoogle Scholar
  253. Masters, M., 1985, Generalized transduction in: The Genetics of Bacteria(J. G. Scaife, D. Leach, and A. Galizzi, eds.), pp. 197–215, Academic Press, New York.Google Scholar
  254. Masters, M., Newman, B. J., and Henry, C. M., 1984, Reduction of marker discrimination in transductional recombination, Mol. Gen. Genet. 196: 85–90.PubMedGoogle Scholar
  255. Matsubara, K., 1981, Replication control system in lambda dv, Plasmid 5: 32–52.PubMedGoogle Scholar
  256. Mattes, R., 1985, Habilitationsschrift, University of Regensburg, Regensburg, F.R.G., 1985.Google Scholar
  257. Meselson, M., and Yuan, R., 1968, DNA restriction enzyme from E. coli, Nature 217: 1110–1114.Google Scholar
  258. Messer, W., Bellekes, U., and Lother, H., 1985, Effect of dammethylation on the activity of the E. colireplication origin, oriC, EMBO I. 4: 1327–1332.Google Scholar
  259. Meurs, E., and D’Ari, R., 1979, Prophage substitution and prophage loss from superinfected Escherichia coli recA(Pl) lysogens, 1. Virol. 31: 277–280.Google Scholar
  260. Meyer, J., and Iida, S., 1979, Amplification of chloramphenicol resistance transposons carried by phage PI Cm in Escherichia coli, Mol. Gen. Genet. 176: 209–219.Google Scholar
  261. Meyer, J., Stâlhammar-Carlemalm, M., and Iida, S., 1981, Denaturation map of bacteriophage P1 DNA, Virology 110: 167–175.PubMedGoogle Scholar
  262. Meyer, J., Iida, S., and Arber, W., 1983, Physical analysis of the genomes of hybrid phages between phage P1 and plasmid pl5B. Mol. Biol. 165: 191–195.Google Scholar
  263. Meyer, J., Stâlhammer-Carlemalm, M., Streiff, M., Iida, S., and Arber, W., 1986, Sequence relations among the IncY plasmids p15B, Pl and P7 prophages, Plasmid 16: 81–89.PubMedGoogle Scholar
  264. Meyers, D. E., and Landy, A., 1973, The role of host RNA polymerase in P1 phage development, Virology 51: 521–524.Google Scholar
  265. Miki, T., Chang, Z. T., and Horiuchi, T., 1984a, Control of cell division by sex factor F in Escherichia coli. II. Identification of genes for inhibitor protein and trigger protein on the 42,84–43.6 F segment, I. Mol. Biol. 174: 627–646.Google Scholar
  266. Miki, T., Yoshioka, K., and Horiuchi, T., 1984b, Control of cell division by sex factor F in Escherichia coli. I. The 42.84–43.6 F segment couples cell division of the host bacteria with replication of plasmid DNA. Mol. Biol. 174: 605–625.Google Scholar
  267. Miller, J. F., and Malamy, M. H., 1983, Identification of the pifCgene and its role in negative control of F factor pifgene expression. Bacteriol. 156: 338–347.Google Scholar
  268. Miller, J. H., 1972, Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  269. Mise, K., 1971, Isolation and characterization of a new generalized transducing bacteriophage different from P1 in Escherichia coli, I. Virol. 7: 168–175.Google Scholar
  270. Mise, K., 1980, New recombinant prophages between bacteriophage P1 and the R plasmid NR1, in: Antibiotic Resistance. Transposition and Other Mechanisms( S. Mitsuhashi, L. Rosival, and V. Krcmery, eds.), pp. 77–81, Springer-Verlag, Berlin.Google Scholar
  271. Mise, K., and Arber, W., 1975, Bacteriophage P1 carrying drug resistance genes of the R factor NR1, in: Microbial Drug Resistance( S. Mitsuhashi and H. Hashimoto, eds.), pp. 165–167, University Park Press, Baltimore.Google Scholar
  272. Mise, K., and Arber, W., 1976, Plaque-forming transducing bacteriophage P1 derivatives and their behaviour in lysogenic conditions, Virology 69: 191–205.PubMedGoogle Scholar
  273. Mise, K., and Suzuki, K., 1970, New generalized transducing bacteriophage in Escherichia coli, J. Virol. 6: 253–255.Google Scholar
  274. Mise, K., Kawai, M., Yoshida, Y., and Nakamura, A., 1981, Characterization of bacteriophage j2 of Salmonella typhias a generalized transducing phage closely related to coliphage P1, /. Gen. Microbiol. 126: 321–326.Google Scholar
  275. Mise, K., Yoshida, Y., and Kawai, M., 1983, Generalized transduction between Salmonella typhiand Salmonella typhimuriumby phage j2 and characterization of the j2 plasmid in Escherichia coli, 1. Gen. Microbiol. 129: 3395–3400.Google Scholar
  276. Mori, H., Ogura, T., and Hiraga, S., 1984, Prophage X induction caused by mini-F plasmid genes, Mol. Gen. Genet. 196: 185–193.PubMedGoogle Scholar
  277. Mori, H., Kondo, A., Ohshima, A., Ogura, T., and Hiraga, S., 1986, Structure and function of the F plasmid genes essential for partitioning, 1. Mol. Biol. 192: 1–15.Google Scholar
  278. Moriya, S., Ogasawara, N., and Yoshikawa, H., 1985, Structure and function of the region of the replication origin of the Bacillus subtilischromosome. III. Nucleic acid sequence of some 10,000 base pairs in the origin region, Nucleic Acids Res. 13: 2251–2265.PubMedGoogle Scholar
  279. Murakami, Y., Ohmori, H., Yura, T., and Nagata, T., 1987, Requirement of the E. coli dnaAgene function for on-2 dependent mini-F plasmid replication, /. Bacteriol. 169: 1724–1730.Google Scholar
  280. Mural, R. J., 1978, Transcription of bacteriophage P1, PhD thesis, University of Georgia, Athens.Google Scholar
  281. Mural, R. J., Chesney, R. H., Vapnek, D., Kropf, M. M., and Scott, J. R., 1979, Isolation and characterization of cloned fragments of bacteriophage P1 DNA, Virology 93: 387–397.PubMedGoogle Scholar
  282. Murialdo, H., and Becker, A., 1978, Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages, Microbiol. Rev. 42: 529–576.PubMedGoogle Scholar
  283. Murooka, Y., and Harada, T., 1979, Expansion of the host range of coliphage P1 and gene transfer from enteric bacteria to other gram-negative bacteria, Appl. Environ. Microbiol. 38: 754–757.PubMedGoogle Scholar
  284. Murotsu, T., Tsutsui, H., and Matsubara, K., 1984, Identification of the minimal essential region for the replication origin of miniF plasmid, Mol. Gen. Genet., 196: 373–378.PubMedGoogle Scholar
  285. Nainen, O., 1975, Ph.D. thesis, University of Georgia, Athens.Google Scholar
  286. Neidhardt, F. C., VanBogelen, R. A., and Vaughn, V., 1984, The genetics and regulation of heat-shock proteins, Annu. Rev. Genet. 18: 295–329.PubMedGoogle Scholar
  287. Newman, B. J., and Masters, M., 1980, The variation in frequency with which markers are transduced by phage P1 is primarily a result of discrimination during recombination, Mol. Gen. Genet. 180: 585–589.PubMedGoogle Scholar
  288. Nordstrom, K., 1933, Replication of plasmid R1: Meselson-Stahl density shift experiments revisited, Plasmid 9: 218–221.Google Scholar
  289. Nordstrom, K., 1985a, Chairman’s introduction: Replication, incompatibility and partition, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 119–123, Plenum Press, New York.Google Scholar
  290. Nordstrom, K., 1985b, Control of plasmid replication: Theoretical considerations and practical solutions, in: Plasmids in Bacteria( D. R. Helinski, S. N. Cohen, D. B. Clewell, D. A. Jackson, and A. Hollaender, eds.), pp. 189–214, Plenum Press, New York.Google Scholar
  291. Novick, R. P., and Hoppenstaedt, F. C., 1978, On plasmid incompatibility, Plasmid 1: 421–434.PubMedGoogle Scholar
  292. Novick, R. P., Clowes, R. C., Cohen, S. N., Curtis, R. III, Datta, N., and Falkow, S., 1976, Uniform nomenclature for bacterial plasmids: A proposal, Bacteriol. Rev. 40: 168–189.PubMedGoogle Scholar
  293. O’Connor, K. A., and Zusman, D. R., 1983, Coliphage P1-mediated transduction of cloned DNA from Escherichia colito Myxococcus xanthus: Use for complementation and recombinational analyses, /. Bacteriol. 155: 317–329.Google Scholar
  294. O’Connor, M. B., Kilbane, J. J., and Malamy, M. H., 1986, Site-specific and illegitimate recombination in the oriV1region of the F factor, I. Mol. Biol. 189: 85–102.Google Scholar
  295. Oeschger, M. P., and Wiprud, G. T., 1980, High efficiency temperature-sensitive amber suppressor strains of Escherichia coliK12: Construction and characterization of recombinant strains with suppressor-enhancing mutations, Mol. Gen. Genet. 178: 293–299.PubMedGoogle Scholar
  296. Ogawa, T., 1975, Analysis of the dnaBfunction of Escherichia colistrain K12 and the dnaB-likefunction of P1 prophage, /. Mol. Biol. 94: 327–340.Google Scholar
  297. Ogawa, T., Baker, T. A., Van der Ende, A., and Kornberg, A., 1985, Initiation of enzymatic replication at the origin of the Escherichia colichromosome: Primase as the sole priming enzyme, Proc. Natl. Acad. Sci. USA 82: 3562–3566.PubMedGoogle Scholar
  298. Ogura, T., and Hiragi., S., 1983a, Mini-F plasmid genes that couple host cell division to plasmid proliferation, Proc. Natl. Acad. Sci. USA 80: 4784–4788.Google Scholar
  299. Ogura, T., and Hiraga, S., 1983b, Partition mechanism of F plasmid: Two plasmid geneencoded products and a cis-acting region are involved in partition, Cell 32: 351–360.Google Scholar
  300. Ohtsubo, H., and Ohtsubo, E., 1978, Nucleotide sequence of an insertion element, IS1, Proc. Natl. Acad. Sci. USA 75: 615–619.PubMedGoogle Scholar
  301. Okada, M., and Watanabe, T., 1968, Transduction with phage PI in Salmonella typhimurium, Nature 218: 185–187.Google Scholar
  302. O’Regan, G. T., Sternberg, N. L., and Cohen, G., 1987, Construction of an ordered, overlapping, library of bacteriophage Pl DNA in XD69, Gene 60: 129–135.PubMedGoogle Scholar
  303. Ornellas, E. P., and Stocker, B. A. D., 1974, Relation of lipopolysaccharide character to phage P1 sensitivity in Salmonella typhimurium, Virology 60: 491–502.Google Scholar
  304. Ozeki, H., 1956, Abortive transduction, Carnegie Inst. of Washington, Yearbook 55: 302–303.Google Scholar
  305. Ozeki, H., 1959, Chromosome fragments participating in transduction in Salmonella typhimurium, Genetics 44: 457–470.Google Scholar
  306. Pabo, C. O., and Sauer, K. T., 1984, Protein-DNA recognition, Annu. Rev. Biochem. 53: 293–321.PubMedGoogle Scholar
  307. Pal, S. K., and Chattoraj, D. K., 1986, RepA is rate limiting for P 1 plasmid replication, in: Mechanisms of DNA Replication and RecombinationUCLA Symposium on Molecular and Cellular Biology, New Series (T. Kelly and R. McMacken, eds.), Vol. 47, pp. 441450, Alan R. Liss, New York.Google Scholar
  308. Pal, S. K., Mason, R. J., and Chattoraj, D. K., 1986, Pl plasmid replication: Role of initiator titration in copy number control, J. Mol. Biol. 192: 275–285.PubMedGoogle Scholar
  309. Petrillo, L. A., Gallagher, P. J., and Elseviers, D., 1983, The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli, Mol. Gen. Genet. 190: 289–294.Google Scholar
  310. Plasterk, R. H. A., Brinkman, A., and Van de Putte, P., 1983, DNA inversions in the chromosome of Escherichia coliand in bacteriophage Mu: Relationship to other site-specific recombination systems, Proc. Natl. Acad. Sci. USA 80: 5355–5358.PubMedGoogle Scholar
  311. Plasterk, R. H. A., and Van de Putte, P., 1984, Genetic switches by DNA inversions in prokaryotes, Biochim. Biophys. Acta 782: 111–119.PubMedGoogle Scholar
  312. Porter, R. D., McLaughlin, T., and Low, B., 1978, Transduction versus “conjugation.” Evidence for multiple roles for exonuclease V in genetic recombination in Escherichia coli, Cold Spring Harbor Symp. Quant. Biol. 43: 1043–1048.Google Scholar
  313. Prehm, P., Schmidt, G., Jann, B., and Jann, K., 1976, The cell wall lipopolysaccharide of Escherichia coli K12, Eur. J. Biochem. 56: 41–55.Google Scholar
  314. Prentki, P., Chandler, M., and Caro, L., 1977, Replication of the prophage P1 during the cell cycle of Escherichia cola, Mol. Gen. Genet. 152: 71–76.PubMedGoogle Scholar
  315. Pritchard, R. H., 1978, Control of DNA replication in bacteria, in: NATO Advanced Study Series A: Life Sciences. DNA Synthesis: Present and Future ( I. Molineux and M. Kohiyama, eds.), pp. 1–26, Plenum Press, New York.Google Scholar
  316. Pritchard, R. H., Barth, P. T., and Collins, J., 1969, Control of DNA synthesis in bacteria, Symp. Soc. Gen. Microbiol. 19: 263–297.Google Scholar
  317. Rae, M. E., and Stodolsky, M., 1974, Chromosome breakage, fusion and reconstruction during Pldl transduction, Virology 58: 32–54.PubMedGoogle Scholar
  318. Raj, A. S., Raj, A. Y., and Schmieger, H., 1974, Phage genes involved in the formation of generalized transducing particles in Salmonella-phageP22, Mol. Gen. Genet. 135: 175–184.PubMedGoogle Scholar
  319. Rashtchian, A., Brown, S. W., Reichler, J., and Levy, S. B., 1986, Plasmid segregation into minicells is associated with membrane attachment and independent of plasmid replication, J. Bacteriol. 165: 82–87.PubMedGoogle Scholar
  320. Ravin, V. K., and Golub, E. I., 1967, Study of phage conversion in Escherichia coli. I. Acquisition of resistance to bacteriophage T1 as a result of lysogenization, Genetika 3: 113–121.Google Scholar
  321. Ravin, V. K., and Shulga, M. G., 1970, Evidence for extrachromosomal location of prophage N15, Virology 40: 800–807.PubMedGoogle Scholar
  322. Rawlins, D. R., Milman, G., Hayward, S. D., and Hayward, G. S., 1985, Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-11 to clustered sites in the plasmid maintenance region, Cell 42: 859–868.PubMedGoogle Scholar
  323. Razza, J. B., Watkins, C. A., and Scott, J. R., 1980, Phage P1 temperature-sensitive mutants with defects in the lytic pathway, Virology 105: 52–59.PubMedGoogle Scholar
  324. Reeve, J. N., Lanka, E., and Schuster, H., 1980, Synthesis of P1 banprotein in minicells infected by Pl mutants, Mol. Gen. Genet. 177: 193–197.PubMedGoogle Scholar
  325. Roizman, B., 1979, The structure and isomerization of herpes simplex virus genomes, Cell 16: 481–494.PubMedGoogle Scholar
  326. Rosenfeld, S. A., and Brenchley, J. E., 1980, Bacteriophage Pl as a vehicle for Mu muta-genesis of Salmonella typhimurium, J. Bacteriol. 144: 848–851.Google Scholar
  327. Rosner, J. L., 1972, Formation, induction and curing of bacteriophage P1 lysogens, Virology 48: 679–689.PubMedGoogle Scholar
  328. Rosner, J. L., 1973, Modification-deficient mutants of bacteriophage Pl. I. Restriction by P1 cryptic lysogens, Virology 52: 213–222.PubMedGoogle Scholar
  329. Rosner, J. L., 1975, Specialized transduction of progenes by coliphage P1: Structure of a partly diploid P1-proprophage, Virology 67: 42–55.PubMedGoogle Scholar
  330. Sadowski, P., 1986, Site-specific recombinases: Changing partners and doing the twist, I. Bacteriol. 165: 341–347.Google Scholar
  331. Sakaki, Y., 1974, Inactivation of the ATP-dependent DNase of Escherichia coliafter infection with double-stranded DNA phages, I. Virol. 14: 1611–1612.Google Scholar
  332. Sandri, R. M., and Berger, H., 1980a, Bacteriophage P1-mediated generalized transduction in Escherichia coli: Fate of transduced DNA in rec+and recA -recipients, Virology 106: 14–29.Google Scholar
  333. Sandri, R. M., and Berger, H., 1980b, Bacteriophage P1-mediated generalized transduction in Escherichia coli: Structure of abortively transduced DNA, Virology 106: 30–40.Google Scholar
  334. Sandulache, R., Prehm, P., and Kamp, D., 1984, Cell wall receptor for bacteriophage Mu G(+), f. Bacteriol. 160: 299–303.Google Scholar
  335. Sandulache, R., Prehm, P., Expert, D., Toussaint, A., and Kamp, D., 1985, The cell wall receptor for bacteriophage Mu in Erwiniaand E. coliC, FEMS Microbiol. Lett. 28: 307–310.Google Scholar
  336. Schildkraut, C. L., Marmur, J., and Doty, P., 1962, Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCI, I. Mol. Biol. 4: 430–443.Google Scholar
  337. Schmieger, H., 1972, Phage P22 mutants with increased or decreased transduction abilities, Mol. Gen. Genet. 119: 75–88.PubMedGoogle Scholar
  338. Schmieger, H., and Backhaus, H., 1976, Altered co-transduction frequencies exhibited by HT-mutants of Salmonellaphage P22, Mol. Gen. Genet. 143: 307–309.PubMedGoogle Scholar
  339. Schmitt, R., Mattes, R., Schmid, K., and Altenbuchner, J., 1979, RAF plasmids in strains of Escherichia coliand their possible role in enteropathogeny, in: Plasmids of Medical, Environmental and Commercial Importance in Development in Genetics( K. N. Tim-mis and A. Puhler, eds.), Vol. 1, pp. 199–210, Elsevier-North Holland, Amsterdam.Google Scholar
  340. Schulz, G., and Stodolsky, M., 1976, Integration sites of foreign genes in the chromosome of coliphage P1: A finer resolution, Virology 73: 299–302.PubMedGoogle Scholar
  341. Schulz, D. W., Taylor, A. F., and Smith, G. R., 1983, Escherichia coliRecBC pseudorevertants lacking Chi recombinational hotspot activity, f. Bacteriol. 155: 664–680.Google Scholar
  342. Schuster, H., Mikolajczyk, M., Rohrschneider, J., and Geschke. B., 1975, X174 DNA-dependent DNA synthesis in vitro: Requirement for PI banprotein in dnaBmutant extracts of Escherichia coli, Proc. Natl. Acad. Sci. USA 72: 3907–3911.Google Scholar
  343. Schuster, H., Lanka, E., Edelbluth, C., Geschke, B., Mikolajczyk, M., Schlicht, M., and Touati-Schwartz, D., 1978, A dnaB-analog DNA-replication protein of phage P1, Cold Spring Harbor Symp. Quant. Biol. 43: 551–557.Google Scholar
  344. Scott, J. R., 1968, Genetic studies on bacteriophage P1, Virology 36: 564–574.PubMedGoogle Scholar
  345. Scott, J. R., 1970a, A defective P1 prophage with a chromosomal location, Virology 40: 144–151.Google Scholar
  346. Scott, J. R., 1970b, Clear plaque mutants of phage P1, Virology 41: 66–71.Google Scholar
  347. Scott, J. R., 1972, A new gene controlling lysogeny in phage P1, Virology 48: 282–283.PubMedGoogle Scholar
  348. Scott, J. R., 1973, Phage P1 cryptic II. Location and regulation of prophage genes, Virology 53: 327–336.PubMedGoogle Scholar
  349. Scott, J. R., 1974, A turbid plaque forming mutant of phage Pl that cannot lysogenize Escherichia coli, Virology 62: 344–349.Google Scholar
  350. Scott, J. R., 1975, Superinfection immunity and prophage repression in phage Pi, Virology 65: 173–178.PubMedGoogle Scholar
  351. Scott, J. R., 1980, Immunity and repression in bacteriophages P1 and P7, Curr. Top. Microbiol. Im m un ol. 90: 49–65.Google Scholar
  352. Scott, J. R., 1984, Regulation of plasmid replication, Microbiol. Rev. 48: 1–23.PubMedGoogle Scholar
  353. Scott, J. R., and Kropf, M. M., 1977, Location of new clear plaque genes on the P1 map, Virology 82: 362–368.PubMedGoogle Scholar
  354. Scott, J. R., and Rownd, R. H., 1980, Workshop summary: Regulation of plasmid replication, in: ICN/UCLA Symposium on Mechanistic Studies of DNA Replication and Genetic Recombination( B. Alberts, ed.), pp. 1–8, Academic Press, New York.Google Scholar
  355. Scott, J. R., and Vapnek, D., 1980, Regulation of replication of the P1 plasmid prophage, in: ICN/UCLA Symposium on Mechanistic Studies of DNA Replication and Genetic Recombination( B. Alberts, ed.), pp. 335–345, Academic Press, New York.Google Scholar
  356. Scott, J. R., Kropf, M., and Mendelson, L., 1977a, Clear plaque mutants of phage P7, Virology 76: 39–46.Google Scholar
  357. Scott, J. R., Laping, J. L., and Chesney, R. H., 1977b, A phage P1 virulent mutation at a new map location, Virology 78: 346–348.Google Scholar
  358. Scott, J. R., Chesney, R. H., and Novick, R. P., 1978a, Mutant in P1 plasmid maintenance, in: Microbiology 1978 (D. Schlessinger, ed. l, pp. 74–77, American Society for Microbiology, Washington.Google Scholar
  359. Scott, J. R., West, B. W., and Laping, J. L., 1978b, Superinfection immunity and prophagc repression in phage Pl. IV. The cl repressor bypass function and the role of c4 repressor in immunity, Virology 85: 587–600.Google Scholar
  360. Scott, J. R., Kropf, M. M., Padolsky, L., Goodspeed, J. K., Davis, R., and Vapnek, D., 1982, Mutants of the plasmid prophage P1 with elevated copy number: Isolation and characterization, I. Bacteriol. 150: 1329–1339.Google Scholar
  361. Segev, N., and Cohen, G., 1981, Control of circularization of bacteriophage P1 DNA in Escherichia coli, Virology 114: 333–342.Google Scholar
  362. Segev, N., Laub, A., and Cohen, G., 1980, A circular form of bacteriophage P1 DNA made in lytically infected cells of Escherichia coli. I. Characterization and kinetics of formation, Virology 101: 261–271.PubMedGoogle Scholar
  363. Selvaraj, G., and Iyer, V. N., 1980, A dnaBanalog function specified by bacteriophage P7 and its comparison to the similar function specified by bacteriophage P1, Mol. Gen. Genet. 178: 561–566.Google Scholar
  364. Sengstag, C., and Arber, W., 1983, IS2 insertion is a major cause of spontaneous mutagenesis of the bacteriophage PI: Non-random distribution of target sites, EMBO I. 2: 67–71.Google Scholar
  365. Sengstag, C., and Arber, W., 1987, A cloned DNA fragment from bacteriophage P1 enhances IS2 insertion, Mol. Gen. Genet. 206: 344–351.PubMedGoogle Scholar
  366. Sengstag, C., Shepherd, J. C. W., and Arber, W., 1983, The sequence of the bacteriophage P1 genome region serving as hot target for IS2 insertion, EMBO I. 2: 1777–1781.Google Scholar
  367. Shafferman, A., Geller, T., and Hertman, I., 1978, Genetic and physical characterization of Pldlwprophage and its derivatives, Virology 86: 115–126.PubMedGoogle Scholar
  368. Shafferman, A., Geller, T., and Hertman, I., 1979, Identification of the Pl compatibility and plasmid maintenance locus by a mini Pl lackplasmid, Virology 96: 32–37.PubMedGoogle Scholar
  369. Shapiro, J. A., 1977, Appendix B, in: Bacterial Plasmids in DNA Insertion Elements, Plasmids and Episomes( A. L. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), p. 634, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  370. Sherratt, D., Dyson, P., Boocock, M., Brown, L, Summers, D., Stewart, G., and Chan, P., 1984, Site-specific recombination in transposition and plasmid stability, Cold Spring Harbor Symp. Quant. Biol. 49: 227–233.PubMedGoogle Scholar
  371. Shields, M. S., Kline, B. C., and Tam, J. E., 1986, A rapid method for the quantitative measurement of gene dosage: Mini-F plasmid concentration as a function of cell growth rate, I. Microbiol. Methods 6: 33–46.Google Scholar
  372. Simon, M., and Silverman, M., 1983, Recombinational regulation of gene expression in bacteria, in: Gene Function in Prokaryotes( J. Beckwith, J. Davies, and J. A. Gallant, eds.), pp. 211–227, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  373. Simon, M., Zieg, J., Silverman, M., Mandel, G., and Doolittle, R., 1980, Phase variation: Evolution of a controlling element, Science 209: 1370–1374.PubMedGoogle Scholar
  374. Smith, D. W., Garland, A. M., Herman, G., Enns, R. E., Baker, T. A., and Zyskind, J., 1985, The importance of state of methylation of oriCGATC sites in initiation of DNA replication in Escherichia coli, EMBO I. 4: 1319–1327.Google Scholar
  375. Smith, G. R., 1983, General recombination, in: Lambda II. ( R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 175–209, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  376. Smith, H. W., 1972, Ampicillin resistance in Escherichia coliby phage infection, Nature New Biol. 238: 205–206.PubMedGoogle Scholar
  377. Smith, T. A. G., and Hays, J. B., 1985, Repair and recombination of non-replicating UV-irradiated phage DNA in E. coli. II. Stimulation of RecF-dependent recombination by excision repair of cyclobutane pyrimidine dimers and of other photoproducts, Mol. Gen. Genet. 201: 393–401.PubMedGoogle Scholar
  378. Segaard-Anderson, L., Rokeach, L. A., and Molin, S., 1984, Regulated expression of a gene important for replication of plasmid F in E. coli, EMBO J. 3: 257–262.Google Scholar
  379. Som, T., Sternberg, N., and Austin, S., 1981, A nonsense mutation in bacteriophage P1 eliminates the synthesis of a protein required for normal plasmid maintenance, Plasmid 5: 150–160.PubMedGoogle Scholar
  380. Sommer, S., Bailone, A., and Devoret, R., 1985, SOS induction by thermosensitive replication mutants of miniF plasmid, Mol. Gen. Genet. 198: 456–464.PubMedGoogle Scholar
  381. Stahl, F. W., 1979, Specialized sites in generalized recombination, Annu. Rev. Genet. 13: 724.Google Scholar
  382. Stalker, D. M., and Helinski, D. R., 1985, DNa segments of the IncX plasmid R485 determining replication incompatibility with plasmid R6K, Plasmid 14: 245–254.PubMedGoogle Scholar
  383. Sternberg, N., 1978, Demonstration and analysis of Pl site-specific recombination using X-P1 hybrid phages constructed in vitro, Cold Spring Harbor Symp. Quant. Biol. 43: 1143–1146.Google Scholar
  384. Sternberg, N., 1979, A characterization of bacteriophage P1 DNA fragments cloned in a lambda vector, Virology 96: 129–142.PubMedGoogle Scholar
  385. Sternberg, N., 1981, Bacteriophage P1 site-specific recombination. III. Strand exchange during recombination at loxsites, J. Mol. Biol., 150: 603–608.PubMedGoogle Scholar
  386. Sternberg, N., 1985, Evidence that adenine methylation influences DNA-protein interactions in Escherichia coli, J. Bacteriol. 164: 490–493.Google Scholar
  387. Sternberg, N., and Austin, S., 1981, The maintenance of the P1 plasmid prophage, Plasmid 5: 20–31.PubMedGoogle Scholar
  388. Sternberg, N., and Austin, S., 1983, Isolation and characterization of P1 minireplicons, XPl:5R and X-P1:5L, J. Bacteriol. 153: 800–812.PubMedGoogle Scholar
  389. Sternberg, N., and Coulby, J., 1987a, Recognition and cleavage of the bacteriophage P1 packaging site (pac). I. Differential processing of the cleaved ends in vivo, I. Mol. Biol. 194: 453–468.Google Scholar
  390. Sternberg, N., and Coulby, J., 1987b, Recognition and cleavage of the bacteriophage P1 packaging site (pac). II. Functional limits of pacand location of paccleavage termini, J. Mol. Biol. 194: 469–480.Google Scholar
  391. Sternberg, N., and Hamilton, D., 1981, Bacteriophage P1 site-specific recombination. I. Recombination between loxPsites, J. Mol. Biol. 150: 467–486.PubMedGoogle Scholar
  392. Sternberg, N., and Hoess, R., 1983, The molecular genetics of bacteriophage P1, Ann u. Rev. Genet. 17: 123–154.Google Scholar
  393. Sternberg, N., and Weisberg, R., 1975, Packaging of prophage and host DNA by coliphage lambda, Nature 256: 97–103.PubMedGoogle Scholar
  394. Sternberg, N., Austin, S., Hamilton, D., and Yarmolinsky, M., 1978, Analysis of bacteriophage P1 immunity by using lambda P1 recombinants constructed in vitro, Proc. Natl. Acad. Sci. USA 75: 5594–5598.Google Scholar
  395. Sternberg, N., Austin, S., and Yarmolinsky, M., 1979, Regulatory circuits in bacteriophage P1 as analyzed by physical dissection and reconstruction., Contrib. Microbiol. Immunol. 6: 89–99.PubMedGoogle Scholar
  396. Sternberg, N., Hamilton, D., Austin, S., Yarmolinsky, M., and Hoess, R., 1980, Site-specific recombination and its role in the life cycle of bacteriophage Pl, Cold Spring Harbor Symp. Quant. Biol. 45: 297–309.Google Scholar
  397. Sternberg, N, Hamilton, D., and Hoess, R., 1981a, P1 site-specific recombination. II. Recombination between loxPand the bacterial chromosome, /. Mol. Biol. 150: 487–507.Google Scholar
  398. Sternberg, N., Powers, M., Yarmolinsky, M., and Austin, S., 198 lb, Group Y incompatibility and copy control of P1 prophage, Plasmid 5:138–149.Google Scholar
  399. Sternberg, N., Hoess, R., and Abremski, K., 1983, The P1 lox-Cre site-specific recombination system: Properties of loxsites and biochemistry of lox-Cre interactions, in: Mechanisms of DNA Replication and Recombination, ICN-UCLA Symposia on Molecular and Cellular Biology, New Series ( N. Cozzarelli, ed.), Vol. 10, pp. 671–684, Alan R. Liss, New York.Google Scholar
  400. Sternberg, N., Sauer, B., Hoess, R., and Abremski, K., 1986, An initial characterization of the bacteriophage P1 cre structural gene and its regulatory region, /. Mol. Biol. 187: 197–212.Google Scholar
  401. Stodolsky, M., 1973, Bacteriophage P1 derivatives with bacterial genes: A heterozygote enrichment method for the selection of Pldprolysogens, Virology 53: 471–475.PubMedGoogle Scholar
  402. Stoleru, G. H., Gerbaud, G. R., Bouanchaud, D. H., and LeMinor, L., 1972, Etude d’un plasmide transférable déterminant la production d’H2S et la résistance à la tétracycline chez “Escherichia coli,” Ann. Inst. Pasteur. 123: 743–754.Google Scholar
  403. Streiff, M. B., Iida, S., and Bickle, T. A., 1987, Expression and proteolytic processing of the darAanti-restriction gene product of bacteriophage P1, Virology 157: 167–171.PubMedGoogle Scholar
  404. Streisinger, G., Emrich, J., and Stahl, M. M., 1967, Chromosome structure in phage T4. III. Terminal redundancy and length determination, Proc. Natl. Acad. Sci. USA 57: 292–295.PubMedGoogle Scholar
  405. Summers, D. K., and Sherratt, D. J., 1984, Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization and stability, Cell 36: 1097–1103.PubMedGoogle Scholar
  406. Susskind, M. M., and Botstein, D., 1978, Molecular genetics of bacteriophage P22, Microbial. Rev. 42: 385–413.Google Scholar
  407. Swack, J. A., Pal, S. K., Mason, R. J., Abeles, A. L., and Chattoraj, D. K., 1987, P1 plasmid replication: measurement of initiator protein concentration in vivo, I. Bacteriol. 169: 3737–3742.Google Scholar
  408. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W., 1983, The doublestranded-break repair model for recombination, Cell 33: 25–35.PubMedGoogle Scholar
  409. Tabuchi, A., 1985, Nucleotide sequence of the replication region of plasmid R401 and its incompatibility function, Microbiol. lmmunol. 29: 383–393.Google Scholar
  410. Takano, T., 1971, Bacterial mutant defective in plasmid formation. Requirement for the Ion plus allele, Proc. Natl. Acad. Sci. USA 68: 1469–1473.Google Scholar
  411. Takano, T., 1977, Mechanism of defective lysogenization by phage P1 in a /on-mutant of Escherichia coliK12, Microbiol. Immunol. 21: 573–581.PubMedGoogle Scholar
  412. Takano, T., and Ikeda, S., 1976, Phage P1 carrying kanamycin resistance gene of R factor, Virology 70: 198–200.PubMedGoogle Scholar
  413. Tanimoto, K., and Iino, T., 1984, An essential gene for replication of the mini-F plasmid from origin I, Mol. Gen. Genet. 196: 59–63.PubMedGoogle Scholar
  414. Teather, R. M., 1974, The localization and timing of cell division in Escherichia coli, Ph.D. dissertation, University of Edinburgh.Google Scholar
  415. Terawaki, Y., and Rownd, R., 1972, Replication of R factor Rtsl in Proteus mirabilis, 1. Bacteriol. 109: 492–498.Google Scholar
  416. Terawaki, Y., Takayasu, H., and Akiba, T., 1967, Thermosensitive replication of a kanamycin resistance factor, /. Bacteriol. 94: 687–690.Google Scholar
  417. Terawaki, Y., Kakizawa, Y., Takayasu, H., and Yoshikawa, M., 1968, Temperature sensitivity of cell growth in Escherichia coliassociated with the temperature sensitive R(KM) factor, Nature 219: 284–285.PubMedGoogle Scholar
  418. Ting, R. C., 1962, The specific gravity of transducing particles of bacteriophage P1, Virology 16: 115–121.PubMedGoogle Scholar
  419. Tokino, T., Murotsu, T., and Matsubara, K., 1986, Purification and properties of the mini-F plasmid-encoded E protein needed for autonomous replication control of the plasmid, Proc. Natl. Acad. Sci. USA 83: 4109–4113.Google Scholar
  420. Tomas, J. M., and Kay, W. W., 1984, Effect of bacteriophage Pl lysogeny on lipopolysaccharide composition and the lambda receptor of Escherichia coli, I. Bacteriol. 159: 1047–1052.Google Scholar
  421. Tomas, J., Regué, M., Parés, R., Jofre, J., and Kay, W. W., 1984, P1 bacteriophage and tellurite sensitivity in Klebsiella pneumoniaeand Escherichia coli, Can. J. Microbiol. 30: 830–836.Google Scholar
  422. Tominaga, A., and Enomoto, M., 1986, Magnesium-dependent plaque formation by bacteriophage PlcinC(–)on Escherichia coliC and Shigella sonnei, Virology 155: 284–288.Google Scholar
  423. Touati-Schwartz, D., 1978, Two replication functions in phage Pl: ban, an analog of dnaB, and bof, involved in the control of replication, in: DNA Synthesis—Present and Future, ( I. Molineux, and M. Kohiyama, eds.), pp. 683–692, Plenum Press, New York.Google Scholar
  424. Touati-Schwartz, D., 1979a, A dnaBanalog, ban, specified by bacteriophage P1: Genetic and physiological evidence for functional analogy and interactions between the two products, Mol. Gen. Genet. 174: 173–188.Google Scholar
  425. Touati-Schwartz, D., 1979b, A new pleiotropic bacteriophage P1 mutation, bof, affecting cl repression activity, the expression of plasmid incompatibility and the expression of certain constitutive prophage genes, Mol. Gen. Genet. 174: 189–202.Google Scholar
  426. Toussaint, A., Lefebvre, N., Scott, J. R., Cowan, J. A., DeBruijn, F., and Bukhari, A. I., 1978, Relationships between temperate phages Mu and P1, Virology 89: 146–161.PubMedGoogle Scholar
  427. Trawick, J. D., and Kline, B. C., 1985, A two-stage molecular model for control of mini-F replication. Plasmid 13: 59–69.PubMedGoogle Scholar
  428. Tsutsui, H., Fujiyama, A., Murotsu, T., and Matsubara, K., 1983, Role of nine repeating sequences of the mini-F genome for expression of F-specific incompatibility phenotype and copy number control, /. Bacteriol. 155: 337–344.Google Scholar
  429. Tucker, W. T., Miller, C. A., and Cohen, S. N., 1984, Structural and functional analysis of the parregion of the pSC101 plasmid, Cell 38: 191–201.PubMedGoogle Scholar
  430. Tye, B. K., Chan, R. K., and Botstein, D., 1974a, Packaging of an oversize transducing genome by Salmonellaphage P22, J. Mol. Biol. 85: 485–500.Google Scholar
  431. Tye, B. K., Huberman, J. A., and Botstein, D., 1974b, Non random circular permutation of phage P22 DNA, J. Mol. Biol. 85: 501–532.Google Scholar
  432. Tyler, B. M., and Goldberg, R. B., 1976, Transduction of chromosomal genes between enteric bacteria by bacteriophage P1, J. Bacteriol. 125: 1105–1111.PubMedGoogle Scholar
  433. Uhlin, B. E., and Nordström, K., 1985, Preferential inhibition of plasmid replication in vivoby altered DNA gyrase activity in Escherichia coli, 1. Bacteriol. 162: 855–857.Google Scholar
  434. Velleman, M., Dreisekelmann, B., and Schuster, H., 1987, Multiple repressor binding sites in the genome of bacteriophage P1, Proc. Natl. Acad. Sci. USA 84: 5570–5574.PubMedGoogle Scholar
  435. Vetter, D., Andrews, B. J., Roberts-Beatty, L., and Sadowski, P. D., 1983, Site-specific recom- bination of yeast 2-rim DNA in vitro, Proc. Natl. Acad. Sci. USA 80: 7284–7288.Google Scholar
  436. Wada, C., Akiyama, Y., Ito, K., and Yura, T., 1986, Inhibition of F replication in htpRmutants of Escherichia colideficient in sigma 32 protein, Mol. Gen. Genet. 203: 208–213.PubMedGoogle Scholar
  437. Walker, D. H. Jr., and Anderson, T. F., 1970, Morphological variants of coliphage P1, J. Virol. 5: 765–782.PubMedGoogle Scholar
  438. Walker, D. H. Jr., and Walker, J. T., 1975, Genetic studies of coliphage Pl. I. Mapping by use of prophage deletions, J. Virol. 16: 525–534.PubMedGoogle Scholar
  439. Walker, D. H. Jr., and Walker, J. T., 1976a, Genetic studies of coliphage P1. II. Relatedness to phage P7, J. Virol. 19: 271–274.Google Scholar
  440. Walker, D. H. Jr., and Walker, J. T., 1976b, Genetic studies of coliphage P1. III. Extended genetic map, /. Virol. 20: 177–187.Google Scholar
  441. Walker, J. T., and Walker, D. H. Jr., 1980, Mutations in coliphage P1 affecting host cell lysis, /. Virol. 35: 519–530.Google Scholar
  442. Walker, J. T., and Walker, D. H. Jr., 1981, Structural proteins of coliphage P1, in: Progress in Clinical and Biological Research( M. S. DuBow, ed.), Vol. 64, pp. 69–77, Alan R. Liss, New York.Google Scholar
  443. Walker, J. T., and Walker, D. H. Jr., 1983, Coliphage P1 morphogenesis. Analysis of mutants by electron microscopy, J. Virol. 45: 1118–1139.PubMedGoogle Scholar
  444. Walker, J. T., Iida, S., and Walker, D. H. Jr., 1979, Permutation of the DNA in small-headed virions of coliphageGoogle Scholar
  445. Wall, J. D., and Harriman, P. D., 1974, Phage P1 mutants with altered transducing abilities for Escherichia coli, Virology 59: 532–544.Google Scholar
  446. Wandersman, C., and Yarmolinsky, M., 1977, Bipartite control of immunity conferred by the related heteroimmune plasmid prophages, P1 and P7 (formerly dAmpl, Virology 77: 386–400.PubMedGoogle Scholar
  447. Watanabe, T., Nishida, H., Ogata, C., Arai, T., and Sato, S., 1964, Episome-mediated transfer of drug-resistance in Enterobacteriaceae. III. Transduction of resistance factors, J. Bacteriol. 82: 202–209.Google Scholar
  448. Watkins, C. A., and Scott, J. R., 1981, Characterization of bacteriophage D6, Virology 110: 302–317.PubMedGoogle Scholar
  449. West, B. W., and Scott, J. R., 1977, Superinfection immunity and prophage repression in phage P1 and P7. III. Induction by virulent mutants, Virology 78: 267–276.PubMedGoogle Scholar
  450. Wickner, S. H., and Chattoraj, D. K., 1987, Replication of miniP1 plasmid DNA in vitrorequires two initiation proteins encoded by the repAgene of phage P1 and the dnaAgene of Escherichia coli, Proc. Natl. Acad. Sci., USA 84: 3668–3672.Google Scholar
  451. Wierzbicki, A., Kendall, M., Abremski, K., and Hoess, R., 1987, A mutational analysis of the bacteriophage P1 recombinase Cre, J. Mol. Biol. 195: 785–794.PubMedGoogle Scholar
  452. Windle, B. E., 1986, Characterization of a P1 bacteriophage encoded function, ref, that stimulates homologous recombination in E. coli, Ph.D. dissertation, University of Maryland, Catonsville.Google Scholar
  453. Windle, B. E., and Hays, J. B., 1986, A phage P1 function that stimulates homologous recombination of the Escherichia colichromosome, Proc. Natl. Acad. Sci. USA 83: 3885–3889.PubMedGoogle Scholar
  454. Wolfson, J. S., Hooper, D. C., Swartz, M. N., Swartz, M. D., and McHugh, G. L., 1983, Novobiocin-induced elimination of F’lacand mini-F plasmids from Escherichia coli, J. Bacteriol. 156: 1165–1170.Google Scholar
  455. Womble, D. D., and Rownd, R. H., 1986, Regulation of Xdv plasmid replication. A quantitative model for control of plasmid Xdv replication in the bacterial cell division cycle, J. Mol. Biol. 191: 367–382.PubMedGoogle Scholar
  456. Womble, D. D., and Rownd, R. H., 1987, Regulation of mini-F plasmid DNA replication. A quantitative model for control of plasmid mini-F replication in the bacterial cell division cycle, J. Mol. Biol. 195: 99–114.PubMedGoogle Scholar
  457. Woods, W., and Egan, B., 1976, Prophage induction of non-inducible coliphage 186, J. Virol. 14: 1349–1366.Google Scholar
  458. Yamaguchi, K., and Masamune, Y., 1985, Autogenous regulation of synthesis of the replication protein in plasmid pSC101, Mol. Gen. Genet. 200: 362–367.PubMedGoogle Scholar
  459. Yamaguchi, K., and Yamaguchi, M., 1984, The replication origin of pSC101: Replication properties of a segment capable of autonomous replication, J. Gen. Appl. Microbiol. 30: 347–358.Google Scholar
  460. Yamamoto, Y., 1982, Phage P1 mutant with decreased abortive transduction, Virology 118: 329–344.PubMedGoogle Scholar
  461. Yarmolinsky, M., 1977, Genetic and physical structure of bacteriophage P1 DNA, in: DNA Insertion Sequences, Episomes and Plasmids ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 721–732, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  462. Yarmolinsky, M., 1984, Bacteriophage P1, in: Genetic Maps. 1984( S. f. O’Brien, ed.), Vol. 3, pp. 42–54, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  463. Yarmolinsky, M., 1987, Bacteriophage P1, in: Genetic Maps, 1987( S. J. O’Brien, ed.), Vol. 4, pp. 38–47, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  464. Yarmolinsky, M. B., and Stevens, E., 1983, Replication-control functions block the induction of an SOS response by a damaged P1 bacteriophage, Mol. Gen. Genet. 192: 140–148.PubMedGoogle Scholar
  465. York, M., and Stodolsky, M., 1981, Characterization of PlargF derivatives from Escherichia coli K12 transduction. I. IS1 elements flank the argF gene segment, Mol. Gen. Genet. 181: 230–240.PubMedGoogle Scholar
  466. York, M. K., and Stodolsky, M., 1982a, Characterization of P1argFderivatives from Escheri chia coliK12 transduction. II. Role of P1 in specialized transduction of argF, Virology 120: 130–145.Google Scholar
  467. York, M. K., and Stodolsky, M., 1982b, Characterization of PlargFderivatives from Escherichia coliK12 transduction. III. P 1 Cm 13argFderivatives, Virology 123: 336–343.Google Scholar
  468. Yoshida, Y., and Mise, K., 1984, Characterization of generalized transducing phage 4,W39 heteroimmune to phage P1 in Escherichia coliW39, Microbiol. lmmunol. 28: 415–426.Google Scholar
  469. Yuan, R., 1981, Structure and mechanism of multifunctional restriction endonucleases, Annu. Rev. Biochem. 50: 285–315.PubMedGoogle Scholar
  470. Yun, T., and Vapnek, D., 1977, Electron microscopic analysis of bacteriophages P1, P1Cm and P7. Determination of genome sizes, sequence homology and location of antibiotic resistance determinants, Virology 77: 376–385.PubMedGoogle Scholar
  471. Zabeau, M., and Roberts, R. J., 1979, The role of restriction endonuclease in molecular genetics, Mol. Genet. 3: 1–63.Google Scholar
  472. Zabrovitz, S., Segev, N., and Cohen, G., 1977, Growth of bacteriophage P1 in recombination-deficient hosts of Escherichia coli, Virology 80: 233–248.Google Scholar
  473. Zieg, J., Silverman, H., Hilmen, M., and Simon, M., 1977, Recombinational switch for gene expression, Science 196: 170–172.PubMedGoogle Scholar
  474. Zyskind, J. W., Cleary, J. M., Brusilow, W. S. A., Harding, N. E., and Smith, D. W., 1983, Chromosomal replication origin from the marine bacterium Vibrio harveyifunctions in Escherichia coli: oriCconsensus sequence, Proc. Natl. Acad. Sci. USA 80: 1164–1168.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Michael B. Yarmolinsky
    • 1
  • Nat Sternberg
    • 2
  1. 1.Laboratory of Biochemistry, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Central Research and Development DepartmentE. I. DuPont de Nemours & Co.WilmingtonUSA

Personalised recommendations