The T7 Group

  • Rudolf Hausmann
Part of the The Viruses book series (VIRS)


In this chapter I shall not try to review in detail the genetics and molecular biology of phage T7, since this topic has been covered repeatedly (Studier, 1972; Hausmann, 1976; Rabussay and Geiduschek, 1977; Studier and Dunn, 1983). Besides, Dunn and Studier (1983) have exhaustively analyzed the genome structure of T7, giving the full sequence of the 39,936 base pairs of its DNA and a complete survey of its 50-odd genes and its functions (where known), in addition to a full analysis of its signal sequences, such as the terminal repeats, promoters, terminators, processing sequences for RNase III, and origins of DNA replication. Rather, I shall here recapitulate some of the basic findings with regard to structure and life cycle of T7 in order to allow the reader to follow my thought with regard to the main problem I have in mind (but which I am unable to solve): How did this surprising biological entity come about? Unless we find satisfactory answers to the questions regarding origins and evolution of this phage, we cannot really claim to have understood it, notwithstanding the full grasp we might come to have of all molecular details of the workings of that self-replicating machine.


Genetic Recombination Phage Genome Shigella Sonnei Template Specificity Amber Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. H., 1959, Bacteriophages, Interscience Publishers, New York.Google Scholar
  2. Adams, M. H., and Wade, E., 1954, Classification of bacterial viruses: The relationship of two Serratia phages to coli-dysentery phages T3, T7, and D44, /. Bacteriol. 68: 320.Google Scholar
  3. Adler, S., and Modrich, P., 1983, T7-induced DNA polymerase, /. Biol. Chem. 258: 6956.Google Scholar
  4. Adolph, K. W., and Haselkorn, R., 1972, Comparison of the structures of blue-green algal viruses LPP-IM, LPP-2, and bacteriophage T7, Virology 47: 701.PubMedGoogle Scholar
  5. Amemiya, K., Raboy, B., and Shapiro, L., 1980, Involvement of host RNA polymerase in the early transcription program of Caulobacter crescentus bacteriophage 4Cdl DNA, Virology 104: 109.PubMedGoogle Scholar
  6. Araki, H., and Ogawa, H., 1981, A T7 amber mutant defective in DNA-binding protein, Mol. Gen. Genet. 183: 66.PubMedGoogle Scholar
  7. Araki, H., and Ogawa, H., 1982, Novel amber mutants of bacteriophage T7, growth of which depends on Escherichia coli DNA-binding protein, Virology 118: 260.PubMedGoogle Scholar
  8. Bailey, J. N., Klement, J. F., and McAllister, W. T., 1983, Relationship between promoter structure and template specificities exhibited by the bacteriophage T3 and T7 RNA polymerses, Proc. Natl. Acad. Sci. USA 80: 2814.PubMedGoogle Scholar
  9. Bandyopadhyay, P. K., Studier, F. W., Hamilton, D. L., and Yuan, R., 1985, Inhibition of the type I restriction-modification enzymes EcoB and EcoK by the gene 0.3 protein of bacteriophage T7, J. Mol. Biol. 182: 567.PubMedGoogle Scholar
  10. Basu, S., Sarkar, P., Adhya, S., and Maitra, U., 1984, Locations and nucleotide sequences of three major class III promoters for bacteriophage T3 RNA polymerase on T3 DNA, J. Biol. Chem. 259: 1993.PubMedGoogle Scholar
  11. Bazinet, C., and King, J., 1985, The DNA translocating vertex of dsDNA bacteriophage, Annu. Rev. Microbiol. 39: 109.PubMedGoogle Scholar
  12. Beck, P. J., Condreay, J. P., and Molineux, I. J., 1986, Expression of the unassembled capsid protein during infection of Shigella sonnei by bacteriophage T7 results in DNA damage that is repairable by bacteriophage T3, but not T7, DNA ligase, /. Bacteriol. 167: 251.Google Scholar
  13. Beier, H., and Hausmann, R., 1973, Genetic map of bacteriophage T3, I. Virol. 12: 417.Google Scholar
  14. Beier, H., and Hausmann, R., 1974, T3 x T7 phage crosses leading to recombinant RNA polymerases, Nature 251: 538.PubMedGoogle Scholar
  15. Bessler, W., Freund-Mölbert, E., Knüfermann, H., Rudolph, C., Thurow, H., and Stirm, S., 1973, A bacteriophage-induced depolymerse active on Klebsiella Kl1 capsular polysaccharide, Virology 56: 134.PubMedGoogle Scholar
  16. Bordier, C., and Dubochet, J., 1974, Electron microscopic localization of the binding sites of Escherichia coli RNA polymerase in the early promoter region of T7 DNA, Eur. I. Biochem. 44: 617.Google Scholar
  17. Botstein, D., 1980, A theory of modular evolution for bacteriophage, Ann. N.Y. Acad. Sci. 354: 484.PubMedGoogle Scholar
  18. Briat, J. F., and Chamberlin, M. J., 1984, Identification and characterization of a new transcriptional termination factor from Escherichia coli, Proc. Natl. Acad. Sci. USA 81: 7373.PubMedGoogle Scholar
  19. Britten, R. J., and Kohne, D. E., 1968, Repeated sequences in DNA, Science 161: 529.PubMedGoogle Scholar
  20. Brown, J. E., Klement, J. F., and McAllister, W. T., 1986, Sequences of three promoters for the bacteriophage SP6 RNA polymerase, Nucleic Acids Res. 14: 3521.PubMedGoogle Scholar
  21. Brunovskis, L., Hyman, R. W., and Summers, W. C., 1973, Pasteurella pestis bacteriophage H and Escherichia coli bacteriopage III are nearly identical, I. Virol. 11: 306.Google Scholar
  22. Butler, E. T., and Chamberlin, M. J., 1982, Bacteriophage SP6-specific RNA polymerase I. Isolation and characterization of the enzyme, /. Biol. Chem 257: 5772.Google Scholar
  23. Campbell, A., and Botstein, D., 1983, Evolution of the lambdoid phages, in:Lambda II (R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. Weisberg, eds.), p. 365, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  24. Carter, A. D., and McAllister, W. T., 1981, Sequence of three class II promoters for the bacteriophage T7 RNA polymerase, I. Mol. Biol. 153: 825.Google Scholar
  25. Cavanaugh, D. C., and Quan, S. F., 1953, Rapid identification of Pasteurella pestis, Am. I. Clin. Pathol. 23: 619.Google Scholar
  26. Chamberlin, M., McGrath, J., and Waskell, L., 1970, New RNA polymerase from Escherichia coli infected with bacteriophage T7, Nature 228: 227.PubMedGoogle Scholar
  27. Chamberlin, M., and Ring, J., 1972, Studies of the binding of Escherichia coli RNA polymerase to DNA. V. T7 RNA chain initiation by enzyme-DNA complexes, I. Mol. Biol. 70: 221.Google Scholar
  28. Chatterjee, S. N., and Maiti, M., 1984, Vibriophages and vibriocins: Physical, chemical, and biological properties, Adv. Virus Res. 29: 263.PubMedGoogle Scholar
  29. Davis, R. W., and Hyman, R. W., 1971, A study in evolution: The DNA base sequence homology between coliphages T7 and T3, J. Mol. Biol. 62: 287.PubMedGoogle Scholar
  30. De Massy, B., Studier, F. W., Dorgai, L., Appelbaum, E., and Weisberg, R. A., 1984, Enzymes and sites of genetic recombination: Studies with gene-3 endonuclease of phage T7 and with site-affinity mutants of phage lambda, Cold Spring Harbor Symp. Quant. Biol. 49: 715.PubMedGoogle Scholar
  31. De Massy, B., Weisberg, R. A., and Studier, F. W., 1987, Gene 3 endonuclease of bacteriophage T7 resolves conformationally branched structures in double-stranded DNA, /. Mol. Biol. 193: 359.Google Scholar
  32. Demerec, M., and Fano, U., 1945, Bacteriophage-resistant mutants in Escherichia coli, Genetics 30: 119.PubMedGoogle Scholar
  33. Dettori, R., Maccacaro, G. A., and Piccinin, G. L., 1961, Sex-specific bacteriophages of Escherichia coli K-12, G. Microbiol. 9: 141.Google Scholar
  34. Dietz, A., 1985, Untersuchungen zur Evolution von Verwandten des Phagen T7 durch vergleichende DNA-Basensequenzanalyse, Ph.D. Thcsis, University of Freiburg, Freiburg, F.R.G.Google Scholar
  35. Dietz, A., Andrejauskas, E., Messerschmid, M., and Hausmann, R., 1986, Two groups of capsule-specific coliphages coding for RNA polymerases with new promoter specificities, J. Gen. Virol. 67: 831.PubMedGoogle Scholar
  36. Dietz, A., Ktisscl, H., and Hausmann, R., 1985, On the evolution of the terminal redundancies of klebsiella 2 phage No. 11 and of coliphages T3 and T7, I. Gen. Virol. 66: 181.Google Scholar
  37. Dressler, D., Wolfson, J., and Magazin, M., 1972, Initiation and reinitiation of DNA synthesis during replication of bacteriophage T7,. Proc. Natl. Acad. Sci. USA. 69: 998.PubMedGoogle Scholar
  38. Dunn, J. I., and Studier, F. W., 1973, T7 early RNAs are generated by site-specific cleavages, Proc. Nat]. Acad. Sci. USA 70: 1559.Google Scholar
  39. Dunn, J. J., and Studier, F. W., 1973, Effect of RNAase III cleavage on translation of bacteriophage T7 messenger RNAs, J. Mol. Biol. 99: 487.Google Scholar
  40. Dunn, J. J., and Studier, F. W., 1980, The transcription termination site at the end of the early region of bacteriophage T7 DNA, Nucleic Acids Res. 10: 2119.Google Scholar
  41. Dunn, J. J., and Studier, F. W., 1981, Nucleotide sequence from the genetic left end of bacteriophage T7 DNA to the beginning of gene 4, J. Mol. Biol. 148: 303.PubMedGoogle Scholar
  42. Dunn, J. J., and Studier, F. W., 1983, Complete nucleotide sequence of bacteriophage T7 DNA and the location of T7 genetic elements, J. Mol. Biol. 166: 535.Google Scholar
  43. Fraenkel-Conrat, H., 1985, The Viruses. Catalogue, Characterization, and Classification, Plenum Press, New York.Google Scholar
  44. Fuller, C. W., and Richardson, C. C., 1985, Initiation of DNA replication at the primary origin of bacteriophage T7 by purified proteins. Site and direction of initial DNA synthesis, J. Biol. Chem. 260: 3185.PubMedGoogle Scholar
  45. Garner, I., Cromie, K. D., Maison, E. A., and Hayward, R. S., 1985, Transcription termination regions of coliphage T7 DNA: The effects of nusAl, Mol. Gen. Genet. 200: 295.PubMedGoogle Scholar
  46. Girard, G., 1943. Sensibilité des bacilles pesteux et pseudotuberculcux aux bacteriophages, Ann. Inst. Pasteur 69: 52.Google Scholar
  47. Gross, G., and Dunn, J. J., 1987, Structure of secondary cleavage sites of E. coli RNAaseIII in Ait RNA from bacteriophage T7, Nucl. Acids Res. 15: 431.PubMedGoogle Scholar
  48. Hamada, K., Fujisawa, H., and Minagawa, T., 1986, A defined in vitro system for packaging of bacteriophage T3 DNA, Virology 151: 119.PubMedGoogle Scholar
  49. Hausmann, R., 1976, Bacteriophage T7 genetics, Curr. Top. Microbiol. Immunol. 75: 77.PubMedGoogle Scholar
  50. Hausmann, R., and Gomez, B., 1967, Amber mutants of bacteriophages T3 and T7 defective in phage-directed deoxyribonucleic acid synthesis, I. Virol. 1: 779.Google Scholar
  51. Hausmann, R., Gomez, B., and Moody, B., 1968, Physiological and genetic aspects of abortive infection of a Shigella sonnei strain by coliphage T7, J. Virol. 2: 335.PubMedGoogle Scholar
  52. Hausmann, R., and Härle, E., 1971, Expression of the genomes of the related bacteriophages T3 and T7, in: Proceedings of the First European Biophysics Congress ( E. Broda, ed.), pp. 467–488, Wiener Medizinische Akademie, Vienna.Google Scholar
  53. Hausmann, R., and Tomkiewicz, C., 1976, Genetic analysis of template specificity of RNA polymerases (gene 1 products) coded by phage T3 x T7 recombinants within gene 1, in: RNA Polymerase (Monograph) ( R. Losick and M. Chamberlin, eds.), pp. 731–743, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  54. Hausmann, R. L., Almeida-Magalhäes, E. P., and Araujo, C., 1961, Isolation and characterization of hybrids between bacteriophages T3 and T7, An. Microbiol. Univ. Brasil 10: 35.Google Scholar
  55. Hertman, I., 1964, Bacteriophage common to Pasteurella pestis and Escherichia coli, J. Bacteriol. 88: 1002.PubMedGoogle Scholar
  56. Hesselbach, B. A., and Nakada, D., 1975, Inactive complex formation between E. coli RNA polymerase and an inhibitor protein purified from T7 phage infected cells, Nature 258: 354.PubMedGoogle Scholar
  57. Hesselbach, B. A., and Nakada, D., 1977a, “Host shutoff” function of bacteriophage T7: Involvement of T7 gene 2 and gene 0.7 in the inactivation of Escherichia coli RNA polymerase, /. Virol. 24:736.Google Scholar
  58. Hesselbach, B. A., and Nakada, D., 1977b, I protein: Bacteriophage T7-coded inhibitor of Escherichia coli RNA polymerase, J. Virol. 24: 746.PubMedGoogle Scholar
  59. Hodgson, D., Shapiro, L., and Amemiya, K., 1985, Phosphorylation of the ß’ subunit of RNA polymerase and other host proteins upon 4Cdl infection of Caulobacter crescentus, J. Virol. 55: 238.Google Scholar
  60. Holmgren, A., Kallis, G. B., and Nordström, B., 1981, A mutant thioredoxin from Escherichia coli tsnC7007 that is nonfunctional as subunit of phage T7 DNA polymerase, J. Biol. Chem. 256: 3118.PubMedGoogle Scholar
  61. Holmgren, A., Ohlsson, I., and Grankvist, M. L., 1978, Thioredoxin from Escherichia coli. Radioimmunological and enzymatic determinations in wild type cells and mutants defective in phage T7 DNA replication, /. Biol. Chem. 253: 430.Google Scholar
  62. Hughes, J. A., Brown, L. R., and Ferro, A. J., 1987, Nucleotide sequence and analysis of the coliphage T3 S-adenosylmethionine hydrolase gene and its surrounding ribonuclease III processing sites, Nucl. Acids Res. 15: 717.PubMedGoogle Scholar
  63. Hyman, R. W., Brunovskis, I., and Summers, W. C., 1973, DNA base sequence homology between coliphages T7 and III and between T3 and III as determined by heteroduplex mapping in the electron microscope, J. Mol. Biol. 77: 189.PubMedGoogle Scholar
  64. Hyman, R. W., Brunovskis, I., and Summers, W. C., 1974, A biochemical comparison of the related bacteriophages T7, (I, (II, W31, H, and T3, Virology 57: 189.PubMedGoogle Scholar
  65. Issinger, O. G., Beier, H., and Hausmann, R., 1973, In vivo and in vitro “phenotypic mixing” with amber mutants of phages T3 and T7, Mol. Gen. Genet. 122: 81.Google Scholar
  66. Jolly, J. F., 1979, Program of bacteriophage gh-1 DNA transcription in infected Pseudomonas putida, J. Virol. 30: 771.Google Scholar
  67. Kassavetis, G. A., Butler, E. T., Roulland, D., and Chamberlin, M. J., 1982, Bacteriophage SP6-specific RNA polymerase. II. Mapping of SP6 DNA and selective in vitro transcription, J. Biol. Chem. 257: 5779.PubMedGoogle Scholar
  68. Korsten, K. H., Tomkiewicz, C., and Hausmann, R., 1979, The strategy of infection as a criterion for phylogenetic relationships of non-coli phages morphologically similar to phage T7, /. Gen. Virol. 43: 57.Google Scholar
  69. Kuhn, A. H. U., Moncany, M. I. J., Kellenberger, E., and Hausmann, R., 1982, Involvement of the bacterial groM gene product in bacteriophage T7 reproduction, /. Virol. 41: 657.Google Scholar
  70. Kwiatkowski, B., Beilharz, H., and Stirm, S., 1975, Disruption of Vi bacteriophage III and localization of its deacetylase activity, /. Gen. Virol. 29: 267.Google Scholar
  71. Kwiatkowski, B., Boschek, B., Thiele, H., and Stirm, S., 1982, Endo-N-acetylneuraminidase associated with bacteriophage particles, J. Virol. 43: 697.PubMedGoogle Scholar
  72. Langman, L., Paetkau, V., Scraba, D., Miller, R. C. Jr., Roeder, G. S., and Sadowski, P. D., 1978, The structure and maturation of intermediates in bacteriophage T7 DNA replication, Can. J. Biochem. 56: 508.Google Scholar
  73. Lanni, Y. T., 1969, Function of two genes in the first-step-transfer DNA of bacteriophage T5, J. Mol. Biol. 44: 173.PubMedGoogle Scholar
  74. Lazarus, A. S., and Gunnison, J. B., 1947, The action of Pasteurella pestis bacteriophage on strains of Pasteurella, Salmonella, and Shigella, J. Bacteriol. 53: 705.Google Scholar
  75. Lee, D., and Sadowski, P., 1981, Genetic recombination of bacteriophage T7 in vivo studied by use of a single physical assay, j. Virol. 40: 839.PubMedGoogle Scholar
  76. Luftig, R., and Haselkom, R., 1968, Comparison of blue-green algae virus LPP-1 and the morphologically related viruses GiII and coliphage T7, Virology 34: 675.PubMedGoogle Scholar
  77. Masker, W. E., Kuemmerle, N. B., and Allison, D. P., 1978, In vitro packaging of bacteriophage T7 DNA synthesized in vitro, J. Virol. 27: 149.Google Scholar
  78. Masker, W. E., and Serwer, P., 1982, DNA packaging in vitro by an isolated bacteriophage T7 procapsid, J. Virol. 43: 1138.PubMedGoogle Scholar
  79. Matson, S. W., Tabor, S., and Richardson, C. S., 1983, The gene 4 protein of bacteriophage T7, /. Biol. Chem. 258: 14017.Google Scholar
  80. Matsuo-Kato, H., Fujisawa, H., and Minagawa, T., 1981, Structure and assembly of bateriophage T3 tails, Virology 109: 157.PubMedGoogle Scholar
  81. Matthews, R. E. F., 1982, Classification and nomenclature of viruses, Intervirology 17: 1.Google Scholar
  82. Matthews, R. E. F., 1985, Viral taxonomy for the nonvirologist, Annu. Rev. Microbial. 39: 451.Google Scholar
  83. McAllister, W. T., and Barrett, C. L., 1977, Hybridization mapping of restriction fragments from the early region of bacteriophage T7 DNA, Virology 82: 275.PubMedGoogle Scholar
  84. McAllister, W. T., Morris, C., Rosenberg, A. H., and Studier, F. W., 1981, Utilization of bacteriophage T7 late promoters in recombinant plasmids during infection, J. Mol. Biol. 153: 527.PubMedGoogle Scholar
  85. McGraw, N. J., Bailey, J. N., Cleaves, G. R., Dembinski, D. R., Gocke, C. R., Joliffe, L. K., MacWright, R. S., and MacAllister, W. T., 1985, Sequence and analysis of the gene for bacteriophage T3 RNA polymerase, Nucleic Acids Res. 18: 6753.Google Scholar
  86. Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K, and Green, M. R., 1984, Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter, Nucleic Acids Res. 12: 7035.PubMedGoogle Scholar
  87. Mertens, H., and Hausmann, R., 1982, Coliphage BA14: A new relative of phage T7, J. Gen. Virol. 62: 331.PubMedGoogle Scholar
  88. Miller, R. C. Jr., Lee, M., Scraba, D. G., and Paetkau, V., 1976, The role of bacteriophage T7 exonuclease (gene 6) in genetic recombination and production of concatemers, J. Mol. Biol. 101: 223.PubMedGoogle Scholar
  89. Modrich, P., and Richardson, C. C., 1975, Bacteriophage T7 deoxyribonucleic acid replication in vitro. Bacteriophage T7 DNA polymerase: An enzyme composed of phage-and host-specific subunits, /. Biol. Chem. 250: 5515.Google Scholar
  90. Moffatt, B. A., Dunn, J. J., and Studier, F. W., 1984, Nucleotide sequence of the gene for bacteriophage T7 RNA polymerase, J. Mol. Biol. 173: 265.PubMedGoogle Scholar
  91. Molineux, I. J., and Spence, J. L., 1984, Virus-plasmid interactions: Mutants of bacteriophage T3 that abortively infect plasmid F—containing (F I strains of Escherichia coli, Proc. Natl. Acad. Sci. USA 81: 1465.Google Scholar
  92. Molnar, D. M., and Lawton, W. D., 1969, Pasteurella bacteriophage sex specific in Escherichia coli, I. Virol. 4: 896.Google Scholar
  93. Monod, J., and Wollman, E., 1947, L’inhibition de la croissance et de l’adaptation enzymatique chez les bactéries infectées par le bacteriophage, Ann. Inst. Pasteur 73: 937.Google Scholar
  94. Morris, C. E., Klement, J. F., and McAllister, W. T., 1986, Cloning and expression of the bacteriophage T3 RNA polymerase gene, Gene 41: 193.PubMedGoogle Scholar
  95. Ochman, H., and Selander, R. K., 1984, Evidence for clonal population structure in Escherichia coli, Proc. Natl. Acad. Sci. USA 81: 198.Google Scholar
  96. O’Hare, K. M., and Hayward, R. S., 1981, Termination of transcription of the coliphage T7 “early” operon in vitro: Slowness of enzyme release and lack of any role for sigma, Nucleic Acids Res. 9: 4689.PubMedGoogle Scholar
  97. Olis, D. L., Kline, C., and Steitz, T. A., 1985, Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase, Nature 313: 818.Google Scholar
  98. Paetkau, V., Langman, L., Bradley, R., Scraba, D., and Miller, R. C. Jr., 1977, Folded concatenated genomes as replication intermediates of bacteriophage T7 DNA, J. Virol. 22: 130.PubMedGoogle Scholar
  99. Peters, G. G., and Hayward, R. S., 1974, Transcriptional termination in vitro: The 3’-terminal sequence of coliphage T7 “early” RNA, Biochem. Biophys. Res. Commun. 61: 809.PubMedGoogle Scholar
  100. Poteete, A. R., 1988, Bacteriophage P22, in: The Bacteriophages, Vol. 2 ( R. Calendar, ed.), pp. 647–682, Plenum Press, New York.Google Scholar
  101. Powling, A., and Knippers, R., 1974, Some functions involved in bacteriophage T7 genetic recombination, Mol. Gen. Genet. 134: 173.PubMedGoogle Scholar
  102. Rabussay, D., and Geiduschek, E. P., 1977, Regulation of gene action in the development of lytic bacteriophages, in: Comprehensive Virology 8 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 1–196, Plenum Press, New York.Google Scholar
  103. Rahmsdorf, H. J., Pai, S. H., Ponta, H., Herrlich, P., Roskoski, R. Jr., Schweiger, M., and Studier, F. W., 1974, Protein kinase induction in Escherichia coli by bacteriophage T7, Proc. Natl. Acad. Sci. USA 71: 586.PubMedGoogle Scholar
  104. Reanney, D. C., and Ackermann, H. W., 1982, Comparative biology and evolution of bacteriophages, Adv. Virus Res. 27: 205.PubMedGoogle Scholar
  105. Ritchie, D. A., Thomas, C. A. Jr., MacHattie, L. A., and Wensink, P. C., 1967, Terminal repetition in non-permuted T3 and T7 bacteriophage DNA molecules, J. Mol. Biol. 23: 365.PubMedGoogle Scholar
  106. Roeder, G. S., and Sadowski, P. D., 1977, Bacteriophage T7 morphogenesis: Phage-related articles in cells infected with wild-type and mutant T7 phage, Virology 76: 263.PubMedGoogle Scholar
  107. Roeder, G. S., and Sadowski, P. D., 1979, Pathways of recombination of bacteriophage T7 DNA in vitro, Cold Spring Harbor Symp. Quant. Biol. 43: 1023.PubMedGoogle Scholar
  108. Romano, L. J., and Richardson, C. C., 1979, Characterization of the ribonucleic acid primers and the deoxyribonucleic acid product synthesized by the DNA polymerase and gene 4 protein of bacteriophage T7, J. Biol. Chem. 254: 10483.PubMedGoogle Scholar
  109. Rosa, M. D., 1979, Four T7 RNA polymerase promoters contain an identical 23 bp sequence, Cell 16: 815.PubMedGoogle Scholar
  110. Rothman-Denes, L. B., Muthukrishnan, S., Haselkorn, R., and Studier, F. W., 1973, A T7 gene function required for shut-off of host and early T7 transcription, in: Virus Research ( C. F. Fox and W. S. Robinson, eds.), pp. 227–239, Academic Press, New York.Google Scholar
  111. Rudolph, C., Freund-Mölbert, E., and Stirm, S., 1975, Fragments of Klebsiella bacteriophage No. 11, Virology 64: 236.PubMedGoogle Scholar
  112. Sadowski, P. D., and Kerr, C., 1970, Degradation of Escherichia coli B deoxyribonucleic acid-defective amber mutants of bacteriophage T7, J. Virol. 6: 149.PubMedGoogle Scholar
  113. Sadowski, P. D., Lee, D. D., Andrews, B. J., Babineau, D., Beatty, L., Morse, M. J., Proteau, G., and Vetter, D., 1984, In vitro systems for genetic recombination of the DNAs of bacteriophage T7 and yeast 2-micron circle, Cold Spring Harbor Symp. Quant. Biol. 49: 789.Google Scholar
  114. Saito, H., and Richardson, C. C., 1981, Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7, Cell 27: 533.PubMedGoogle Scholar
  115. Schlegel, R. A., and Thomas, C. A. Jr., 1972, Some special structural features of intracellular bacteriophage T7 concatemers, J. Mol. Biol. 68: 319.PubMedGoogle Scholar
  116. Schmitt, M. P., Beck, P. J., Kearney, C. A., Spence, J. L., DiGiovanni, D., Condreay, J. P., and Molineaux, I. J., 1987, Sequence of a conditionally essential region of bacteriophage T3 including the primary origin of DNA replication, J. Mol. Biol. 193: 479.PubMedGoogle Scholar
  117. Serwer, P., 1976, Internal proteins of bacteriophage T7, J. Mol. Biol. 107: 271.PubMedGoogle Scholar
  118. Serwer, P., Grennhaw, G. A., and Allen, J., 1982, Concatemers in a rapidly sedimenting, replicating bacteriophage T7 DNA, Virology 123: 474.PubMedGoogle Scholar
  119. Serwer, P., and Watson, R. H., 1985, Alterations of the bacteriophage T7 and T3 DNA packaging pathway in Escherichia coli mutant tsnB, Virology 140: 80.PubMedGoogle Scholar
  120. Serwer, P., Watson, R. H., Hayes, S. J., and Allen, J. L., 1983, Comparison of the physical properties and assembly pathways of the related bacteriophages T7, T3, and III, J. Mol. Biol. 170: 447.PubMedGoogle Scholar
  121. Sherman, L. A., and Haselkorn, R., 1970, LPP-1 infection of the blue-green alga Plectonema boryanum. III. Protein synthesis, J. Virol. 6: 841.PubMedGoogle Scholar
  122. Spoerel, N., Herrlich, P., and Bickle, T. A., 1979, A novel bacteriophage defence mechanism: The anti-restriction protein, Nature 278: 30.PubMedGoogle Scholar
  123. Stahl, S. J., and Chamberlin, M. J., 1977, An expanded transcriptional map of T7 bacteriophage. Reading of minor T7 promoter sites in vitro by Escherichia coli RNA polymerse, J. Mol. Biol. 112: 577.PubMedGoogle Scholar
  124. Stone, J. C., and Miller, R. C. Jr., 1984, Plasmid-phage recombination in T7 infected Escherichia coli, Virology 137: 305.PubMedGoogle Scholar
  125. Studier, F. W., 1969, The genetics and physiology of bacteriophage T7, Virology 39: 562.PubMedGoogle Scholar
  126. Studier, F. W., 1972, Bacteriophage T7, Science 176: 367.PubMedGoogle Scholar
  127. Studier, F. W., 1973, Genetic analysis of non-essential bacteriophage T7 genes, /. Mol. Biol. 79: 227.Google Scholar
  128. Studier, F. W., 1979, Relationships among different strains of T7 and among T7-related bacteriophages, Virology 95: 70.PubMedGoogle Scholar
  129. Studier, F. W., and Dunn, J. J., 1983, Organization and expression of bacteriophage T7 DNA, Cold Spring Harbor Symp. Quant. Biol. 47: 999.PubMedGoogle Scholar
  130. Studier, F. W., and Maizel, J. V. Jr., 1969, T7-directed protein synthesis, Virology 39: 575.PubMedGoogle Scholar
  131. Tabor, S., and Richardson, C. C., 1985, A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes, Proc. Natl. Acad. Sci. USA 82: 1074.PubMedGoogle Scholar
  132. Towle, H. C., Jolly, J. F., and Boezi, J. A., 1975, Purification and characterization of bacteriophage gh-1-induced deoxyribonucleic acid-dependent ribonucleic acid polymerase from Pseudomonas putida, I. Biol. Chem, 250: 1723.Google Scholar
  133. Tsujimoto, Y., and Ogawa, H., 1977, Intermediates in genetic recombination of bacteriophage T7 DNA, /. Mol. Biol. 103: 423.Google Scholar
  134. Tsujimoto, Y., and Ogawa, H., 1978, Intermediates in genetic recombination of bacteriophage T7 DNA. Biological activity and the roles of gene 3 and gene 5, /. Mol. Biol. 125: 255.Google Scholar
  135. Watanabe, T., and Okada, M., 1964, New type of sex factor-specific bacteriophage of Escherichia coli, /. Bacteriol. 87: 727.Google Scholar
  136. Watson, J. D., 1972, Origin of concatemeric T7 DNA, Nature (New Biol.) 239: 197.Google Scholar
  137. West, D., Lagenaur, C., and Agabian, N., 1976, Isolation and characterization of Caulobacter crescentus bacteriophage.13Cd1, J. Virol. 17: 568.PubMedGoogle Scholar
  138. Weyer, G. H., Fischer, H., and Hinkle, D. C., 1980, Bactériophage T7 DNA replication in vitro. Electron micrographic analysis of T7 DNA synthesized with purified proteins, I. Biol. Chem. 255: 7965.Google Scholar
  139. Whittam, T. S., Ochman, H., and Selander, R. K., 1983, Multilocus genetic structure in natural populations of Escherichia coli, Proc. Natl. Acad. Sci. USA 80: 1751.PubMedGoogle Scholar
  140. Williams, L., and Meynell, G. G., 1971, Female-specific phages and F-minus strains of.scherichia coli K12, Mol. Gen. Genet. 113: 222.Google Scholar
  141. Wolstenholme, G. E. W., and O’Connor, M. (eds.), 1971, Strategy of the Viral Genome Ciba Foundation Symposium, Churchill Livingstone, London.Google Scholar
  142. Yamada, M., Fujisawa, H., Kato, H., Hamada, K., and Minagawa, T., 1986, Cloning and sequencing of the genetic right end of bacteriophage T3 DNA, Virology 151: 350.PubMedGoogle Scholar
  143. Yamagishi, M., Fujisawa, H., and Minagawa, T., 1985, Isolation and characterization of bacteriophage T3/T7 hybrids and their use in studies on molecular basis of DNA-packaging specificity, Virology 144: 502.PubMedGoogle Scholar
  144. Zavriev, S. K., and Shemyakin, M. F., 1982, RNA polymerase-dependent mechanism for the stepwise T7 phage DNA transport from the virion into E. coli, Nucleic Acids Res. 10: 1635.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Rudolf Hausmann
    • 1
  1. 1.Institut für Biologie III der Universität78 FreiburgFederal Republic of Germany

Personalised recommendations