Advertisement

Phage Mu

  • Rasika M. Harshey
Part of the The Viruses book series (VIRS)

Abstract

Phage Mu was discovered accidentally when an E. coli strain was being tested for phage P1 lysogeny (Taylor, 1963). The first observation Taylor made on the new temperate phage was its ability to cause mutations, and hence the name Mu for mutator. By a series of genetic linkage tests, Taylor confirmed that the mutations resulted from an insertion of the phage genome into the host genes. He drew parallels between the ability of Mu to occupy many chromosomal sites and to suppress the phenotypic expression of genes, and that of “controlling elements” postulated to move between many sites in the maize chromosome and suppress the function of some genes (McClintock, 1956). Taylor’s insight proved prophetic.

Keywords

Cold Spring Harbor Cold Spring Harbor Laboratory Temperate Phage Tail Fiber Host Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Admiraal, G., and Mellema, J. E., 1976, The structure of the contractile sheath of bacteriophage Mu, J. Ultrastruct. Res. 56: 49.CrossRefGoogle Scholar
  2. Akroyd, J., Barton, B., Lund, P., Smith, S. M., Sultana, K., and Symonds, N. 1984, Mapping and properties of the gam and sot genes of phage Mu: Their possible roles in recombination, Cold Spring Harbor Symp. Quant. Biol. 49: 261.PubMedCrossRefGoogle Scholar
  3. Allet, B., 1979, Mu insertion duplicates a 5 base pairs sequence at the host insertion site, Cell 16: 123.PubMedCrossRefGoogle Scholar
  4. Allet, B., and Bukhari, A. I., 1975, Analysis of bacteriophage Mu and lambda-Mu hybrid DNAs by specific endonucleases, J. Mol. Biol. 92: 529.PubMedCrossRefGoogle Scholar
  5. Arraj, J. A., and Marinus, M. G., 1983, Phenotypic reversion in dam mutants of E. coli K12 by a recombinant plasmid containing the dam+ gene, J. Bacteriol. 153: 562.Google Scholar
  6. Bade, E. G., 1972, Asymmetric transcription of bacteriophage Mu-1, Virology 10: 1205.Google Scholar
  7. Bade, E. G., Delius, H., and Allet, B., 1977, Structure and packaging of Mu DNA, in DNA Insertion Elements, Plasmids and Episomes ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 315–318, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  8. Baker, T. A., Howe, M. M., and Gross, C. A., 1983, MudX, a derivative of Mudl (lacApr) which makes stable lacZ fusions at high temperature, J. Bacteriol. 156: 970.PubMedGoogle Scholar
  9. Berget, P. B., and King, J., 1983, T4 tail morphogensis, in Bacteriophage T4 ( C. K. Matthews, E. M. Kutter, G. Mosig, and P. B. Berget, eds.), pp. 246–258, American Society for Microbiology, Washington.Google Scholar
  10. Black, L. W., and Showe, M. K., 1983, Morphogenesis of the T4 head, in Bacteriophage T4 ( C. K. Matthews, E. M. Kutter, G. Mosig, and P. B. Berget, eds.), pp. 219–245, American Society for Microbiology, Washington.Google Scholar
  11. Boram, W., and Abelson, J., 1971, Bacteriophage Mu integration: On the mechanism of Mu induced mutations, J. Mol. Biol. 62: 171.PubMedCrossRefGoogle Scholar
  12. Boram, W., and Abelson, J., 1973, Bacteriophage Mu integration: On the orientation of the prophage, Virology 54: 102.PubMedCrossRefGoogle Scholar
  13. Breepoel, H., Hoogendorp, J., Mellema, J. E., and Wijffelman, C., 1976, Linkage of the variable ends of the bacteriophage Mu DNA to the tail, Virology 74: 279.PubMedCrossRefGoogle Scholar
  14. Brooks, J. E., Blumenthal, R. M., and Gingeras, R., 1983, The isolation and characterization of the E. coli DNA adenine methylase (dam) gene, Nucleic Acids Res. 11: 837.Google Scholar
  15. Broyles, S. S., and Pettijohn, D. E., 1986, Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch, J. Mol. Biol. 187: 47.PubMedCrossRefGoogle Scholar
  16. Bukhari, A. I., 1975, Reversal of mutator phage Mu integration, J. Mol. Biol. 96: 87.PubMedCrossRefGoogle Scholar
  17. Bukhari, A. I., 1976, Bacteriophage Mu as a transposition element, Annu. Rev. Genet. 10: 389.PubMedCrossRefGoogle Scholar
  18. Bukhari, A. I., 1981, Models of DNA transposition, Trends Biochem. Sci. 6: 56.CrossRefGoogle Scholar
  19. Bukhari, A. I., and Allet, B., 1975, Plaque forming lambda-Mu hybrids, Virology 63: 30.PubMedCrossRefGoogle Scholar
  20. Bukhari, A. I., and Ambrosio, L., 1978, The invertible segment of bacteriophage Mu DNA determines the adsorption properties of Mu particles, Nature 271: 575.PubMedCrossRefGoogle Scholar
  21. Bukhari, A. I., and Froschauer, S., 1978, Insertion of a transposon for chloramphenicol resistance into bacteriophage Mu, Gene 3: 303.PubMedCrossRefGoogle Scholar
  22. Bukhari, A., I., and Ljungquist, E., 1977, Bacteriophage Mu: Methods for cultivation and use, in DNA Insertion Elements, Plasmids and Episomes (A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 749–756, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Bukhari, A. I., and Metlay, M., 1973, Genetic mapping of prophage Mu, Virology 54: 109.Google Scholar
  23. Bukhari, A. I., and Taylor, A. L., 1971, Genetic analysis of diaminopimelic acid and lysine requiring mutants of E. coli, J. Bacteriol. 105 :844.PubMedGoogle Scholar
  24. Bukhari, A. I., and Taylor, A. L., 1975, Influence of insertions on packaging of host sequences covalently linked to bacteriophage Mu DNA, Proc. Natl. Acad. Sci. USA 72: 4399.PubMedCrossRefGoogle Scholar
  25. Bukhari, A. I., and Zipser, D., 1972, Random insertion of Mu-1 DNA within a single gene, Nature New Biol. 236: 240.CrossRefGoogle Scholar
  26. Bukhari, A. I., Froschauer, S., and Botchan, M., 1976, The ends of bacteriophage Mu DNA, Nature 264: 580.PubMedCrossRefGoogle Scholar
  27. Campbell, A., 1971, Genetic structure, in The Bacteriophage X ( A. D. Hershey, ed.), pp. 1344, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  28. Casadaban, M. J., and Cohen, S. N., 1979, Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: In vivo probe for transcriptional control sequences, Proc. Natl. Acad. Sci. USA 76: 4530.PubMedCrossRefGoogle Scholar
  29. Casadaban, M. J., and Chou, J., 1984, In vivo formation of gene fusions encoding hybrid J3galactosidase proteins in one step with a transposable Mu-lac transducing phage, Proc. Natl. Acad. Sci. USA 81: 535.Google Scholar
  30. Casjens, S., and King, J., 1975, Virus assembly, Annu. Rev. Biochem. 46: 555.CrossRefGoogle Scholar
  31. Chaconas, G., De Bruijn, F. S., Casadaban, M. J., Lupski, J. R., Kwoh, T. J., Harshey, R. M., DuBow, M. S., and Bukhari, A. I., 1981a, In vitro and in vivo manipulation of bacteriophage Mu DNA: Cloning of Mu ends and construction of mini-Mu carrying selectable markers, Gene 13: 37.Google Scholar
  32. Chaconas, G., Harshey, R. M., Sarvetnick, N., and Bukhari, A. I., 1981b, The predominant end products of prophage Mu DNA transposition during the lytic cycle are replicon fusions, J. Mol. Biol. 150: 341.PubMedCrossRefGoogle Scholar
  33. Chaconas, G., Kennedy, D. L., and Evans, D., 1983, Predominant integration end products of infecting bacteriophage Mu DNA are simple insertions with no preference for integration of either Mu DNA strand, Virology 128: 48.PubMedCrossRefGoogle Scholar
  34. Chaconas, G., Giddens, E. B., Miller, J. L., and Gloor, G., 1985a, A truncated form of the bacteriophage MuB protein promotes conservative integration but not replicative transposition, of Mu DNA, Cell 41: 857.PubMedCrossRefGoogle Scholar
  35. Chaconas, G., Gloor, G., and Miller, J. L., 1985b, Amplification and purification of the bacteriophage Mu encoded B transposition protein, J. Biol. Chem. 260: 2662.PubMedGoogle Scholar
  36. Chase, C. D., and Benzinger, R. H., 1982, Transfection of Escherichia coli spheroplasts with a bacteriophage Mu DNA-protein complex, J. Virol. 42: 176.PubMedGoogle Scholar
  37. Chow, L. T., and Bukhari, A. I., 1976, The invertible DNA segments of coliphages Mu and Pl are identical, Virology 74: 242.PubMedCrossRefGoogle Scholar
  38. Chow, L. T., and Bukhari, A. I., 1978, Heteroduplex electron microscopy of phage Mu mutants containing IS1 insertions and chloramphenicol resistance transposons, Gene 3: 333.PubMedCrossRefGoogle Scholar
  39. Chow, L. T., Kahmann, R., and Kamp, D., 1977, Electron microscopic characterization of DNAs from non-defective deletion mutants of bacteriophage Mu, J. Mol. Biol. 113: 591.PubMedCrossRefGoogle Scholar
  40. Coelho, A., Maynard-Smith, S., and Symonds, N., 1982, Abnormal cointegrate structure mediated by gene B mutants of phage Mu: Their implications with regard to gene function, Mol. Gen. Genet. 185: 356.PubMedCrossRefGoogle Scholar
  41. Couturier, M., 1976, The integration and excision of bacteriophage Mu-1, Cell 7: 155.PubMedCrossRefGoogle Scholar
  42. Couturier, M., and Van Vliet, F., 1974, Vegetative recombination in bacteriophage Mu-1, Virology 60: 1.PubMedCrossRefGoogle Scholar
  43. Craigie, R., and Mizuuchi, K., 1985, Mechanism of transposition of bacteriophage Mu: Structure of a transposition intermediate, Cell 41: 967.CrossRefGoogle Scholar
  44. Craigie, R., and Mizuuchi, K., 1986, Role of DNA topology in Mu transposition: Mechanism of sensing the relative orientation of two DNA segments, Cell 45: 793.PubMedCrossRefGoogle Scholar
  45. Craigie, R., and Mizuuchi, K., 1987, Transposition of Mu DNA: Joining of Mu to target DNA can be uncoupled from cleavage at the ends of Mu, Cell 51: 493.PubMedCrossRefGoogle Scholar
  46. Craigie, R., Mizuuchi, M., and Mizuuchi, K., 1984, Site-specific recognition of the bacteriophage Mu ends by the MuA protein, Cell 39: 387.PubMedCrossRefGoogle Scholar
  47. Craigie, R., Arndt-Jovin, D. J., and Mizuuchi, K., 1985, A defined system for the DNA strand transfer reaction at the initiation of bacteriophage Mu transposition: Protein and DNA substrate requirements, Proc. Natl. Acad. Sci. USA 82: 7570.PubMedCrossRefGoogle Scholar
  48. Cremers, A. F. M., Schepman, M. H., Visser, M. P., and Mellema, J. E., 1977, An analysis of the contracted sheath structure of bacteriophage Mu, Eur. J. Biochem. 80: 393.PubMedCrossRefGoogle Scholar
  49. Daniell, E., and Abelson, J., 1973, Lac messenger RNA in lacZ gene mutants of Escherichia coli caused by insertion of bacteriophage Mu, J. Mol. Biol. 76: 319.PubMedCrossRefGoogle Scholar
  50. Daniell, E., Roberts, R., and Abelson, J., 1972, Mutations in the lactose operon caused by bacteriophage Mu, J. Mol. Biol. 69: 1.PubMedCrossRefGoogle Scholar
  51. Daniell, E., Boram, W., and Abelson, J., 1973a, Genetic mapping of the inversion loop in bacteriophage Mu DNA, Proc. Natl. Acad. Sci USA 70: 2153.PubMedCrossRefGoogle Scholar
  52. Daniell, E., Abelson, J., Kim, J. S., and Davidson, N. 1973b, Heteroduplex structures of bacteriophage Mu DNA, Virology 51: 237.PubMedCrossRefGoogle Scholar
  53. Daniell, E., Kohne, D. E., and Abelson, J., 1975, Characterization of the inhomogeneous DNA in virions of bacteriophage Mu by DNA reannealing kinetics, J. Virol. 15: 739.PubMedGoogle Scholar
  54. De Bruijn, F. J., and Bukhari, A. I., 1978, Analysis of transposable elements inserted in the genomes of bacteriophage Mu and P1, Gene 3: 315.PubMedCrossRefGoogle Scholar
  55. DiNardo, S., Voelkel, K. A., Sternglanz, R., Reynolds, A. E., and Wright, A., 1982, Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes, Cell 31: 43.Google Scholar
  56. Eamshaw, W. C., and Casjens, S. R., 1980, DNA packaging by the double-stranded DNA bacteriophage, Cell 21: 319.CrossRefGoogle Scholar
  57. Egner, C., and Berg, D. E., 1981, Excision of transposon Tn5 is dependent on the inverted repeats but not the transposon function of Tn5, Proc. Natl. Acad. Sci. USA 78: 459.PubMedCrossRefGoogle Scholar
  58. Engler, J. E., and Van Bree, M. P., 1981, The nucleotide sequence and protein-coding capability of the transposable element IS5, Gene 14: 155.PubMedCrossRefGoogle Scholar
  59. Faelen, M., and Toussaint, A., 1973, Isolation of conditional defective mutants of temperate phage Mu-1 and deletion mapping of the Mu-1 prophage, Virology 54: 117.PubMedCrossRefGoogle Scholar
  60. Faelen, M., and Toussaint, A., 1976, Bacteriophage Mu-1, a tool to transpose and to localize bacterial genes, J. Mol. Biol. 104: 525.PubMedCrossRefGoogle Scholar
  61. Faelen, M., and Toussaint, A., 1978, Stimulation of deletions in the E. coli chromosome by partially induced Mu cts62 prophages. J. Bacteriol. 136: 477.PubMedGoogle Scholar
  62. Faelen, M., and Toussaint, A., 1980a, Inversion induced by temperate bacteriophage Mu-1 in the chromosome of E. coli K12, J. Bacterial. 142: 391.Google Scholar
  63. Faelen, M., and Toussaint, A., 1980b, Temperate phage D108 induces chromosomal rearrangements, J. Bacteriol. 143: 1029.PubMedGoogle Scholar
  64. Faelen, M., Toussaint, A., and Couturier, M., 1971, Mu-1 promoted integration of a lambda-gal phage in the chromosome of E. coli, Mol. Gen. Genet. 113: 367.PubMedCrossRefGoogle Scholar
  65. Faelen, M., Toussaint, A., and De Lafonteyne, J., 1975, Model for the enhancement of lambda-gal integration into partially induced Mu lysogens, J. Bacteriol. 121: 873.PubMedGoogle Scholar
  66. Faelen, M., Huisman, O., and Toussaint, A., 1978, Involvement of phage Mu-1 early functions in Mu mediated chromsomal rearrangements, Nature 271: 580.PubMedCrossRefGoogle Scholar
  67. Faelen, M., Toussaint, A., Lefebvre, N., Mergeay, M., Braipson-Thiry, J., and Thiry, G., 1981, Certaines souches de Erwinia sont senibles au bacteriophage Mu, Arch. Intern. Physiol. Biochim. 89: B55.Google Scholar
  68. Faelen, M., Toussaint, A., Waggoner, B., Desmet, L. and Pato, M., 1986, Transposition and replication of maxi-Mu derivatives of bacteriophage Mu, Virology 153: 70.PubMedCrossRefGoogle Scholar
  69. Feiss, M., and Becker, A., 1983, DNA packaging and cutting, in Lambda II ( R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 305–330, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  70. Fitts, R., and Taylor, A. L., 1980, Integration of bacteriophage Mu at host chromosomal replication forks during lytic development, Proc. Natl. Acad. Sci. USA 77: 2801.PubMedCrossRefGoogle Scholar
  71. Friedman, D. I., Plantefaber, L. C., Olsen, E. J., Carver, D., Dea, M., and Gellert, M., 1984, Mutations in gyrB that are is for X site-specific recombination, Mu growth and plasmid maintenance, J. Bacteriol 157: 490.PubMedGoogle Scholar
  72. Gellert, M., 1981, DNA topoisomerases, Annu. Rev. Biochem. 50: 879.PubMedCrossRefGoogle Scholar
  73. George, M., and Bukhari, A. I., 1981, Heterogenous host DNA attached to the left end of mature bacteriophage Mu DNA, Nature 292: 175.PubMedCrossRefGoogle Scholar
  74. Georgopoulous, C., Tilly, K., and Casjens, S., 1983, Lambdoid phage head assembly, in Lambda II ( R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 279–304, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  75. Ghelardini, P., Paolozzi, L., and Liebart, J. C., 1979, Restoration of DNA synthesis at non-permissive temperature and UV resistance induced by bacteriophage Mu in Escherichia coli ligts7, Ann. Microbiol. Paris 130B: 275.Google Scholar
  76. Ghelardini, P., Paolozzi, L., and Liebart, J. C., 1980, Restoration of ligase activity in E. coli, ligts7 strain by bacteriophage Mu and cloning of a DNA fragment harboring the Mu hg gene, Nucleic Acids Res. 8: 3157.PubMedCrossRefGoogle Scholar
  77. Ghelardini, P., Pcdrini, A. M., and Paolozzi, L., 1982, The topoisomerase activity of T4 amG39 mutant is restored in Mu lysogens, FEBS Lett. 137: 49.PubMedCrossRefGoogle Scholar
  78. Ghelardini, P., Liebart, J. C., Marchelli, C., Pedrini, A. M., and Paolozzi, L., 1984, E. coli K12 gyrB gene product is involved in the lethal effect of the ligts2 mutant of bacteriophage Mu, /. Bacteriol, 157: 665.Google Scholar
  79. Gill, G. S., Hull, A. C., and Curtis, R. III, 1981, Mutator bacteriophage D108 and its DNA: An electron microscopic characterization, /. Virol. 37: 420.Google Scholar
  80. Giphart-Gassler, M., Wijffelman, C., and Reeve, J., 198la, Structural polypeptides and products of late genes of bacteriophage Mu: Characterization and functional aspects, I. Mol. Biol. 145: 139.Google Scholar
  81. Giphart-Gassler, M., Reeve, J., and Van de Putte, P. 1981b, Polypeptides encoded by the early region of bacteriophage Mu synthesized in minicells of E. coli, I. Mol. Biol. 145: 165.CrossRefGoogle Scholar
  82. Giphart-Gassler, M., Plasterk, R. H. A., and Van de Putte, P. 1982, G inversion in bacteriophage Mu: A novel way of gene splicing, Nature 297: 339.PubMedCrossRefGoogle Scholar
  83. Gloor, N., and Chaconas, G., 1986, The bacteriophage MuN gene encodes the 64kDa virion protein which is injected with and circularizes infecting Mu DNA, /. Biol. Chem. 261: 16682.Google Scholar
  84. Goosen, N., and Van de Putte, P., 1984, Regulation of Mu transposition. I. Localization of the presumed recognition site for HimD and Ner functions controlling bacteriophage Mu transposition, Gene 30: 41.PubMedCrossRefGoogle Scholar
  85. Goosen, N., and Van de Putte, P., 1986, Role of Ner protein in bacteriophage Mu transposition, /. Bacteriol. 167: 503.Google Scholar
  86. Goosen, T., Giphart-Gassler, M., and Van de Putte, P., 1982, Bacteriophage Mu DNA rep- lication is stimulated by nonessential early functions, Mol. Gen. Genet. 186: 135.PubMedCrossRefGoogle Scholar
  87. Goosen, N., Van Heuvel, M., Moolenaar, G. F., and Van de Putte, P., 1984, Regulation of Mu transposition. II. The Escherichia coli HimD protein positively controls two repressor promoters and the early promoter of bacteriophage Mu, Gene 32: 419.PubMedCrossRefGoogle Scholar
  88. Grindley, N. D. F., and Reed, R. R., 1985, Transpositional recombination in prokaryotes, Annu. Rev. Biochem. 54: 863.PubMedCrossRefGoogle Scholar
  89. Grindley, N. D. F., and Sherratt, D. J., 1978, Sequence analysis at ISI insertion sites: Models for transposition, Cold Spring Harbor Symp. Quant. Biol. 43: 1257.CrossRefGoogle Scholar
  90. Groenen, M. A. M., and Van de Putte, P., 1985, Mapping of a site for packaging of bacteriophage Mu DNA, Virology 144: 520.PubMedCrossRefGoogle Scholar
  91. Grundy, F. J., and Howe, M. M., 1984, Involvement of the invertible G segment in bacteriophage Mu tail fiber biosynthesis, Virology 134: 296.PubMedCrossRefGoogle Scholar
  92. Grundy, F. J., and Howe, M. M., 1985, Morphogenetic structures present in lysates of amber mutants of bacteriophage Mu, Virology 143: 485.PubMedCrossRefGoogle Scholar
  93. Harshey, R. M., 1983, Switch in the transposition products of Mu DNA mediated by proteins: Cointegrates versus simple insertions, Proc. Natl. Acad. Sci. USA 30: 2012.CrossRefGoogle Scholar
  94. Harshey, R. M., 1984a, Transposition without duplication of infecting bacteriophage Mu DNA, Nature 311: 580.PubMedCrossRefGoogle Scholar
  95. Harshey, R. M., 1984b, Non-replicative DNA transposition: Integration of infecting bacteriophage Mu, Cold Spring Harbor Symp. Quant. Biol. 49: 273.PubMedCrossRefGoogle Scholar
  96. Harshey, R. M., 1984b, Non-replicative DNA transposition: Integration of infecting bacteriophage Mu, Cold Spring Harbor Symp. Quant. Biol. 49: 273.PubMedCrossRefGoogle Scholar
  97. Harshey, R. M., and Bukhari, A. I., 1981, A mechanism of DNA transposition, Proc. Natl. Acad. Sci. USA 78: 1090.PubMedCrossRefGoogle Scholar
  98. Harshey, R. M., and Bukhari, A. I., 1983, Infecting bacteriophage Mu DNA forms a circular DNA-protein complex, J. Mol. Biol. 167: 427.PubMedCrossRefGoogle Scholar
  99. Harshey, R. M., and Cuneo, S., 1986, Carboxyl-terminal mutants of phage Mu transposase, J. Genet 65: 159.CrossRefGoogle Scholar
  100. Harshey, R. M., McKay, R., and Bukhari, A. I., 1982, DNA intermediates in transposition of phage Mu, Cell 29: 561.PubMedCrossRefGoogle Scholar
  101. Harshey, R. M., Getzoff, E. D., Baldwin, D. L., Miller, J. L., and Chaconas, G., 1985, Primary structure of phage Mu transposase: Homology to Mu repressor, Proc. Natl. Acad. Sci. USA 82: 7676.PubMedCrossRefGoogle Scholar
  102. Hattman, S., 1979, Unusual modification of bacteriophage Mu DNA, /. Virol. 32: 468.Google Scholar
  103. Hattman, S., 1980, Specificity of the bacteriophage Mu mom + -controlled DNA modification, J. Virol. 34: 277.PubMedGoogle Scholar
  104. Hattman, S, 1982, DNA methyl transferase-dependent transcription of the phage Mu mom gene, Proc. Natl. Acad. Sci. USA 79: 5518.PubMedCrossRefGoogle Scholar
  105. Hattman, S, and Ives, J., 1984, SI nuclease mapping of the phage Mu mom gene promoter: A model for the regulation of mom expression, Gene 29: 185.PubMedCrossRefGoogle Scholar
  106. Hattman, S., Goradia, M., Monaghan, C., and Bukhari, A. I., 1983, Regulation of the DNA modification function of bacteriophage Mu, Cold Spring Harbor Symp. Quant. Biol. 47: 647.PubMedCrossRefGoogle Scholar
  107. Hattman, S., Ives, J., Margolin, W., and Howe, M. M., 1985, Regulation and expression of the bacteriophage Mu mom gene: Mapping of the transactivation function (Dad) to the C region, Gene 39: 71.PubMedCrossRefGoogle Scholar
  108. Hershey, A. D., and Dove, W. D., 1971, Introduction to lambda, in The Bacteriophage X (A.Google Scholar
  109. D. Hershey, ed.), pp. 3–11, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Higgins, N. P., Moncecchi, D., Manlapaz-Ramos, P., and Olivera, B. M., 1983, Bacteriophage Mu DNA replication in vitro, J. Biol. Chem. 258:4293.Google Scholar
  110. Howe, M. M., 1972, Genetic studies on bacteriophage Mu, Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  111. Howe, M. M., 1973a, Prophage deletion mapping of bacteriophage Mu-1, Virology 54: 93.PubMedCrossRefGoogle Scholar
  112. Howe, M. M., 1973b, Transduction of bacteriophage Mu-1, Virology 55: 103.PubMedCrossRefGoogle Scholar
  113. Howe, M. M., 1978, Invertible DNA in phage Mu, Nature 271: 608.CrossRefGoogle Scholar
  114. Howe, M. M., 1980, The invertible G segment of phage Mu, Cell 21: 605.PubMedCrossRefGoogle Scholar
  115. Howe, M. M., and Bade, E. G., 1975, Molecular biology of bacteriophage Mu, Science 190: 624.PubMedCrossRefGoogle Scholar
  116. Howe, M. M., and Schumm, J. W., 1980, Transposition of bacteriophage Mu. Properties of lambda phages containing both ends of Mu, Cold Spring Harbor Symp. Quant. Biol. 45: 337.CrossRefGoogle Scholar
  117. Howe, M. M., and Zipser, D., 1974, Host deletions caused by the integration of bacteriophage Mu-1, Am. Soc. Microbiol. Abstr. 208: 235.Google Scholar
  118. Howe, M. M., Schnos, M., and Inman, R. B., 1977, DNA partial denaturation mapping studies of packaging of bacteriophage Mu DNA, in DNA Insertion Elements, Plasmids and Episomes ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 319–327, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  119. Howe, M. M., Day, K. J., and Schultz, D. W., 1979a, Isolation of mutants defining five new cistrons essential for development of bacteriophage Mu, Virology 93: 303.PubMedCrossRefGoogle Scholar
  120. Howe, M. M., Schumm, J. W., and Taylor, A. L., 1979b, The S and U genes of bacteriophage Mu are located in the invertible G segment of Mu DNA, Virology 92: 108.PubMedCrossRefGoogle Scholar
  121. Hsu, M. T., and Davidson, N., 1972, Structure of inserted bacteriophage Mu-1 DNA and physical mapping of bacterial genes by Mu-1 DNA insertion, Proc. Natl. Acad. Sci. USA 69: 2823.PubMedCrossRefGoogle Scholar
  122. Hsu, M. T., and Davidson, N., 1974, Electron microscope heteroduplex study of the heterogeneity of Mu phage and prophage DNA, Virology 58: 229.PubMedCrossRefGoogle Scholar
  123. Hull, R. C., Gill, G. S., and Curtis, R. III, 1978, Genetic characterization of Mu-like bacteriophage D108, /. Virol. 27: 513.Google Scholar
  124. Inman, R. B., Schnos, M., and Howe, M., 1976, Location of the variable end of Mu DNA within the bacteriophage particle, Virology 72: 393.PubMedCrossRefGoogle Scholar
  125. Joho, R., Nottenburg, C., Coffman, R. L., and Weissman, I. L., 1983, Immunoglobulin gene rearrangement and expression during lymphocyte development, Curr. Top. Dev. Biol. 18: 16.Google Scholar
  126. Jordan, E., Saedler, H., and Starlinger, P., 1968,00 and strong-polar mutations in the gal operon are insertions, Mol. Gen. Genet. 102: 353.Google Scholar
  127. Kahmann, R., 1983, Methylation regulates the expression of a DNA-modification function encoded by bacteriophage Mu, Cold Spring Harbor Symp. Quant. Biol. 47: 639.PubMedCrossRefGoogle Scholar
  128. Kahmann, R., 1984, The mom gene of bacteriophage Mu, Curr. Top. Microbiol. Immunol. 108: 29.PubMedCrossRefGoogle Scholar
  129. Kahmann, R., and Kamp, D., 1979, Nucleotide sequences of the attachment sites of bacteriophage Mu DNA, Nature 280: 247.PubMedCrossRefGoogle Scholar
  130. Kahmann, R., Kamp, D., and Zipser, D., 1976, Transfection of E. coli by Mu DNA, Mol. Gen. Genet. 149: 323.PubMedCrossRefGoogle Scholar
  131. Kahmann, R., Seiler, A., Wulczyn, F. G., and Pfaff, E., 1985a, The mom gene of bacterio- phage Mu: A unique regulatory scheme to control a lethal function, Gene 39: 61.PubMedCrossRefGoogle Scholar
  132. Kahmann, R., Rudt, F., Koch, C., Mertens, G., 1985b, G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor, Cell 41: 771.PubMedCrossRefGoogle Scholar
  133. Kamp, D., 1981, Invertible deoxyribonucleic acid: The G segment of bacteriophage Mu, in Microbiology-1981 ( D. Schlessinger, ed.), pp. 73–76, American Society for Microbiology, Washington.Google Scholar
  134. Kamp, D., Chow, L. T., Broker, T. R., Kwoh, D., Zipser, D., and Kahmann, R., 1978, Site specific recombination in phage Mu, Cold Spring Harbor Symp. Quant. Biol. 43: 1159.CrossRefGoogle Scholar
  135. Karu, A., Sakaki, Y., Echols, H., and Linn, S., 1974, In vitro studies of the gam gene product of bacteriophage, in Mechanisms of Recombination (R. F. Grell, ed.), pp. 95–109, Plenum Press, New York.Google Scholar
  136. Katsura, I., 1983, Tail assembly and injection, in Lambda II ( R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 331–346, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  137. Kemp, C. L., Howatson, A. F., and Siminovitch, C., 1968, Electron microscopic studies of mutants of lambda bacteriophage. I. General description and quantitation of viral products, Virology 36: 490.PubMedCrossRefGoogle Scholar
  138. Khatoon, H., and Bukhari, A. I., 1978, Bacteriophage Mu-induced modification of DNA is dependent on a host function, J. Bacteriol. 136: 423.PubMedGoogle Scholar
  139. Khatoon, H., and Bukhari, A. I., 1981, DNA rearrangements associated with reversion of bacteriophage Mu induced mutations, Genetics 98: 1.PubMedGoogle Scholar
  140. Khoury, G., and Gruss, P., 1983, Enhancer elements, Cell 33: 313.PubMedCrossRefGoogle Scholar
  141. King, J., 1971, Bacteriophage T4 tail assembly: Four steps in core formation, J. Mol. Biol. 58: 693.PubMedCrossRefGoogle Scholar
  142. King, J., and Wood, W. B., 1969, Assembly of bacteriophage T4 tail fibers: The sequence of gene product interaction, J. Mol. Biol. 39: 583.PubMedCrossRefGoogle Scholar
  143. Kleckner, N., 1981, Transposable elements in prokaryotes, Annu. Rev. Genet. 15: 341.PubMedCrossRefGoogle Scholar
  144. Krause, H. M., and Higgins, N. P., 1984, On the Mu repressor and early DNA intermediates of transposition, Cold Spring Harbor Symp. Quant. Biol. 49: 827.PubMedCrossRefGoogle Scholar
  145. Krause, H. M., and Higgins, N. P., 1986, Positive and negative regulation of the Mu operator by Mu repressor and Escherichia coli integration host factor, J. Mol. Biol. 261: 3744.Google Scholar
  146. Krause, H. K., Rothwell, M. R., and Higgins, N. P., 1983, The early promoter of bacteriophage Mu: Definition of the site of transcript initiation, Nucleic Acids Res. 11: 5483.PubMedCrossRefGoogle Scholar
  147. Krylov, V. N., Bogush, V. G., and Shapiro, J., 1980a, Pseudomonas aeroginosa phages whose DNA structure is similar to Mu-1 phage DNA I, Genetika USSR 15 (5): 824.Google Scholar
  148. Krylov, V. N., Bogush, V. G., Yanenko, A. S., and Kirsanov, N. B., 1980b, Pseudomonas aeroginosa phages whose DNA structure is similar to Mu-1 phage DNA II, Genetika USSR 16 6: 975.Google Scholar
  149. Kwoh, D. Y., Zipser, D., and Erdmann, D. S., 1980, Genetic analysis of the cloned genome of phage Mu, Virology 101: 419.PubMedCrossRefGoogle Scholar
  150. Leach, D., and Symonds, N., 1979, The isolation and characterization of a plaque forming derivative of bacteriophage Mu carrying a fragment of Tn3 conferring ampicillin resistance, Mol. Gen. Genet. 172: 179.PubMedCrossRefGoogle Scholar
  151. Liebart, J. C., Ghelardini, P., and Paolozzi, L., 1982, Conservative integration of bacteriophage Mu DNA into pBR322 plasmid, Proc. Natl. Acad. Sci. USA 79: 4362.PubMedCrossRefGoogle Scholar
  152. Ljungquist, E., and Bukhari, A. I., 1977, State of prophage Mu DNA upon induction, Proc. Natl. Acad. Sci. USA 74: 3143.PubMedCrossRefGoogle Scholar
  153. Ljungquist, E., and Bukhari, A. I., 1979, Behavior of bacteriophage Mu DNA upon infection of E. coli, J. Mol. Biol. 133: 339.Google Scholar
  154. Magazin, M., Howe, M., and Allet, B., 1977, Partial correlation of the genetic and physical maps of bacteriophage Mu, Virology 77: 677.PubMedCrossRefGoogle Scholar
  155. Magazin, M., Reeve, J. N., Maynard-Smith, S., and Symonds, N., 1978, Bacteriophage Mu encoded polypeptides synthesized in infected mini-cells, FEMS Microbiol. Lett. 4: 5.CrossRefGoogle Scholar
  156. Margolin, W., and Howe, M. M., 1986, Localization and DNA sequence analysis of the C gene of bacteriophage Mu, the positive regulator of Mu late transcription, Nucleic Acids Res. 14:483:.Google Scholar
  157. Marinus, M. G., and Morris, N. R., 1975, Pleiotropic effects of a DNA adenine methylation mutation)dam-3) in E. coli K12, Mutat. Res. 28: 15.Google Scholar
  158. Marrs, C. F., 1982, Transcription of bacteriophage Mu, Ph.D. thesis, University of Wisconsin, Madison.Google Scholar
  159. Marrs, C. F., and Howe, M. M., 1983, AvaII and Bg1I restriction maps of bacteriophage Mu, Virology 126: 563.PubMedCrossRefGoogle Scholar
  160. Martuscelli, J., Taylor, A. L., Cummings, D. J., Chapman, V. A., Delong, S. S., and Canedo, L., 1971, Electron microscopic evidence for linear insertion of bacteriophage Mu-1 in lysogenic bacteria, J. Virol. 8: 551.PubMedGoogle Scholar
  161. Maxwell, A., Craigie, R., and Mizuuchi, K., 1987, B protein of bacteriophage Mu is an ATPase that preferentially stimulates intermolecular DNA strand transfer, Proc. Natl. Acad. Sci. USA, 84: 699.PubMedCrossRefGoogle Scholar
  162. McBeth, D. L., and Taylor, A. L., 1982, Growth of bacteriophaage Mu in Escherichia coli dnaA mutants, J. Virol. 44: 555.PubMedGoogle Scholar
  163. McBeth, D. L., and Taylor, A. L., 1983, Involvement of Escherichia coli K12 DNA polymerase I in the growth of bacteriophage Mu, J. Virol. 48: 149.PubMedGoogle Scholar
  164. McClintock, B., 1956, Controlling elements and the gene, Cold Spring Harbor Symp. Quant. Biol. 21: 197.CrossRefGoogle Scholar
  165. Mertens, G., Hoffmann, A., Blocker, H., Frank, R., and Kahmann, R., 1984, Gin-mediated site-specific recombination in bacteriophage Mu DNA: Overproduction of the protein and inversion in vitro, EMBO J. 3: 2415.PubMedGoogle Scholar
  166. Miller, H. I., and Friedman, D. I., 1980, An E. coli gene product required for lambda site-specific recombination, Cell 20: 711.Google Scholar
  167. Miller, J. L., Anderson, S. K., Fujita, D. J., Chaconas, G., Baldwin, D., and Harshey, R. M., 1984, The nucleotide sequence of the B gene of bacteriophage Mu, Nucleic Acids Res. 12: 8627.PubMedCrossRefGoogle Scholar
  168. Mise, K., 1971, Isolation and characterization of a new generalized transducing bacteriophage different from P1 in E. coli, J. Virol. 7: 168.PubMedGoogle Scholar
  169. Mizzuuchi, K., 1983, In vitro transposition of bacteriophage Mu: A biochemical approach to a novel replication reaction, Cell 35: 785.CrossRefGoogle Scholar
  170. Mizuuchi, K., 1984, Mechanism of transposition of bacteriophage Mu: Polarity of the strand transfer reaction at the initiation of transposition, Cell 39: 395.PubMedCrossRefGoogle Scholar
  171. Mizuuchi, K., and Craigie, R., 1986, Mechanism of bacteriophage Mu transposition, Ann. Rev. Genet., 20: 385.PubMedCrossRefGoogle Scholar
  172. Mizuuchi, M., Weisberg, R. A., and Mizuuchi, K., 1986, DNA sequence of the control region of phage D108: The N-terminal amino acid sequences of repressor and transposase are similar both in phage D108 and in its relative phage Mu, Nucleic Acids Res. 14: 3813.PubMedCrossRefGoogle Scholar
  173. Moore, D. D., Schumm, J. W., Howe, M. M., and Blattner, F. R., 1977, Insertion of Mu DNA fragments in phage lambda in vitro, in DNA Insertion Elements, Plasmids and Episomes ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 567–574, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  174. Mount, D. W. A., Harris, A. W., Fuerst, C. R., and Siminovitch, L., 1968, Mutations in bacteriophage lambda affecting particle morphogenesis, Virology 35: 134.PubMedCrossRefGoogle Scholar
  175. Murialdo, H., and Becker, A., 1978, Head morphogenesis of complex double-stranded deoxyribonucleic acid bacteriophages, Microbiol. Rev. 42: 529.PubMedGoogle Scholar
  176. Nag, D. K., and Berg, D. E., 1987, Specificity of bacteriophage Mu excision, Mol. Gen. Genet. 207: 395.PubMedCrossRefGoogle Scholar
  177. Nakai, H., and Taylor, A. L., 1985, Host DNA replication forks are not preferred targets for bacteriophage Mu transposition, J. Bacteriol. 163: 282.PubMedGoogle Scholar
  178. Nakayama, C., Teplow, D., and Harshey, R. M., 1987, Structural domains in phage Mu transposase: Identification of the site-specific DNA binding domain, Proc. Natl. Acad. Sci. USA 84: 1809.PubMedCrossRefGoogle Scholar
  179. Day, K. J., Shultz, D. W., and Howe, M. M., 1978, A search for integration deficient mutants of bacteriophage Mu-1, in Microbiology (1978) jD. Schlessinger, ed.), pp. 4851, ASM Publications, Washington.Google Scholar
  180. Day, K. J., Schultz, D. W., Ericsen, W., Rawluk, L., and Howe, M. M., 1979, Correction and refinement of the genetic map of bacteriophage Mu, Virology 93: 320.CrossRefGoogle Scholar
  181. Ohtsubo, E., Zenilman, M., Ohtsubo, H., McCormick, M., Machida, C., and Machida, Y., 1980, Mechanism of insertion and cointegration mediated by ISI and Tn3, Cold Spring Harbor Symp. Quant. Biol. 45: 283.CrossRefGoogle Scholar
  182. Paolozzi, L., and Ghelardini, P., 1986, General method for the isolation of conditional lethal mutants in any required region of the virus genome: Its application to the semi-essential region of phage Mu, J. Mol. Microbiol. 132: 79.Google Scholar
  183. Paolozzi, L., Ducker, R., and Calef, E., 1978, Mechanism of phage Mu-1 integration: Nalidixic acid treatment causes clustering of Mu-1 induced mutations near replication origin, Proc. Natl. Acad. Sci. USA 75: 4940.PubMedCrossRefGoogle Scholar
  184. Paolozzi, L., Ghelardini, P., Kepes, A., and Markovich, H., 1979, The mechanism of integration of bacteriophage Mu-1 in the chromosome of Escherichia coli, Biochem. Biophys. Res. Commun. 88: 111.PubMedCrossRefGoogle Scholar
  185. Paolozzi, L., Ghelardini, P., Liebart, J. C., Capozzoni, A., and Marchelli, C., 1980, Two classes of Mu lig mutants: The thermosensitive for integration and replication and the hyperproducers for ligase, Nucleic Acid Res. 8: 5859.PubMedCrossRefGoogle Scholar
  186. Pato, M. L., and Reich, C., 1982, Instability of transposase activity: Evidence from bacteriophage Mu DNA replication, Cell 36: 197.CrossRefGoogle Scholar
  187. Pato, M. L., and Reich, C., 1984, Stoichiometric use of the transposase of bacteriophage Mu, Cell 36: 197.PubMedCrossRefGoogle Scholar
  188. Pato, M. L., and Reich, C., 1985, Genome Rearrangement, pp. 27–35, Alan R. Liss, New York.Google Scholar
  189. Pato, M. L., and Waggoner, B. T., 1981, Cellular location of Mu DNA replicas, J. Viro 38: 249.Google Scholar
  190. Plasterk, R. H. A., Brinkman, A., and Van de Putte, P., 1983a, DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: Relationship to other site-specific recombination systems, Proc. Natl. Acad. Sci. USA 80: 5355.PubMedCrossRefGoogle Scholar
  191. Plasterk, R. H. A., Ilmer, T. A. M., and Van de Putte, P., 1983b, Site-specific recombination by Gin of bacteriophage Mu: Inversions and deletions, Virology 127: 24.PubMedCrossRefGoogle Scholar
  192. Plasterk, R. H. A., Vrieling, H., and Van de Putte, P., 1983e, Transcription initiation of Mu mom depends on methylation of the promoter region and a phage-coded transactivator, Nature 301: 344.PubMedCrossRefGoogle Scholar
  193. Plasterk, R. H. A., Kanaar, R., and Van de Putte, P., 1984a, A genetic switch in vitro: DNA inversion by gin protein of phage Mu, Proc. Natl. Acad. Sci. USA 81: 2689.PubMedCrossRefGoogle Scholar
  194. Plasterk, R. H. A., Vollering, M., Brinkman, A., and Van de Putte, P., 1984b, Analysis of the methylation-regulated Mu mom transcript, Cell 36: 189.PubMedCrossRefGoogle Scholar
  195. Ptashne, M., Jeffrey, A., Johnson, A. D., Maurer, R., Meyer, B. J., Pabo, C. O., Roberts, T. M., and Sauer, R. T., 1980, How the X repressor and Cro work, Cell 19: 1.PubMedCrossRefGoogle Scholar
  196. Puspurs, A. H., Trun, N. J., and Reeve, J. N., 1983, Bacteriophage Mu DNA circularizes following infection of Escherichia coli, EMBO J. 2: 345.PubMedGoogle Scholar
  197. Reich, C., Waggoner, B. T., and Pato, M. L., 1984, Synchronization of bacteriohage Mu DNA replicative transposition: Analysis of the first round after induction, EMBO J. 3: 1507.PubMedGoogle Scholar
  198. Resibois, A., Colet, M., and Toussaint, A., 1982, Localication of mini-Mu in its replication intermediates, EMBO J. 1: 965.PubMedGoogle Scholar
  199. Resibois, A., Pato, M., Higgins, P., and Toussaint, A., 1984, Replication of bacteriophage Mu and its mini-Mu derivatives, in Proteins Involved in DNA Replication ( S. Spadari and U. Hubscher, eds.), p. 69–76, Plenum Press, New York.Google Scholar
  200. Roeder, G. S., and Sadowski, P. D., 1977, Bacteriophage T7 morphogenesis: Phage-related particles in cells infected with wild type and mutant T7 phage, Virology 76: 263.PubMedCrossRefGoogle Scholar
  201. Ross, W., Shore, S. H., and Howe, M. M., 1986, Mutants of Escherichia coli defective for replicative transposition of bacteriophage Mu, /. Bacteriol. 167: 905.Google Scholar
  202. Saedler, H., and Nevers, P., 1985, Transposition in plants: A molecular model, EMBO J. 4: 585.PubMedGoogle Scholar
  203. Sandulache, R., Prehm, P., and Kamp, D., 1984, Cell wall receptor for bacteriophage Mu G(+), J. Bacteriol. 160: 299.PubMedGoogle Scholar
  204. Sandulache, R., Prehm, P., Expert, D., Toussaint, A., and Kamp, D., 1985, The cell wall receptor for bacteriophage G in Erwinia and Escherichia coli C, FEMS Microbiol. Lett. 28: 307.Google Scholar
  205. Schroeder, W., Bade, E. G., and Delius, H., 1974, Participation of E. coli DNA in the replication of temperate bacteriophage Mu-1, Virology 60: 534.PubMedCrossRefGoogle Scholar
  206. Segal, E., Hagblom, P., Seifert, H. S., and So, M., 1986, Antigenic variation of gonococcal pilus involves assembly of separated silent gene segments, Proc. Natl. Acad. Sci. USA 83: 2177.PubMedCrossRefGoogle Scholar
  207. Serwer, P., 1976, Internal proteins of bacteriophage T7, I. Mol. Biol. 107: 271.CrossRefGoogle Scholar
  208. Shapiro, J. A., 1979, Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements, Proc. Natl. Acad. Sci. USA 76: 1933.PubMedCrossRefGoogle Scholar
  209. Shapiro, J. A., 1984, The use of Mudlac transposons as tools for vital staining to visualize clonal and non-clonal patterns of organization in bacterial growth on agar surfaces, I. Gen. Microbiol. 130:1169.Google Scholar
  210. Shaw, J. E., and Murialdo, H., 1980, Morphogenetic genes C and Nu3 overlap in bacteriophage X, Nature 283: 30.PubMedCrossRefGoogle Scholar
  211. Shore, S. H., and Howe, M. M., 1982, Bacteriophage Mu T mutants are defective in synthesis of the major head polypeptide, Virology 120: 264.PubMedCrossRefGoogle Scholar
  212. Soberon, M., Gama, M. J., Richelle, J., and Martuscelli, J., 1986, Behaviour of temperate phage Mu in Salmonella typhi, J. Mol. Microbiol. 132: 83.Google Scholar
  213. Surette, M. G., Buch, S. J., and Chaconas, G., 1987, Transpososomes: Stable protein-DNA complexes involved in the in vitro transposition of bacteriophage Mu DNA, Cell 49: 253.PubMedCrossRefGoogle Scholar
  214. Swinton, D., Hattman, S., Crain, P. F., Cheng, C.-S., Smith, D. L., and McCloskey, J. A., 1983, Purification and characterization of the unusual deoxynucleoside, deoxyribofuranosylpurin-6y1) glycinamide, specified by the phage Mu modification function, Proc. Natl. Acad. Sci. USA 80: 7400.PubMedCrossRefGoogle Scholar
  215. Symonds, N., 1982, A novel gene splice in bacteriophage Mu, Nature 297: 288.PubMedCrossRefGoogle Scholar
  216. Symonds, N., and Coelho, A., 1978, Role of the G-segment in the growth of phage Mu, Nature 271: 573.PubMedCrossRefGoogle Scholar
  217. Symonds, N., Toussaint, A., Van de Putte, P., and Howe, M. M., eds., 1987, Phage Mu, Cold Spring Harbor Laboratory, New York.Google Scholar
  218. Szatmari, G. B., Kahn, J. S., and DuBow, M. S., 1986, Orientation and sequence analysis of right ends and target sites of bacteriophage Mu and D108 insertions in the plasmid pSC101, Gene 41: 315.PubMedCrossRefGoogle Scholar
  219. Szybalski, W., Kubinski, H., Hradecna, Z., and Summers, W. C., 1971, Analytical and preparative separation of the complementary DNA strands, Methods Enzymol. 21: 383.CrossRefGoogle Scholar
  220. Taylor, A. L., 1963, Bacteriophage-induced mutation in E. coli., Proc. Natl. Acad. Sci. USA 50: 1043.PubMedCrossRefGoogle Scholar
  221. Teifel, J., and Schmieger, H., 1981, The origin of the DNA in transducing particles of bacteriophage Mu. Density gradient analysis of DNA, Mol. Gen. Genet. 184: 312.PubMedGoogle Scholar
  222. To, C. M., Eisenstark, A., and Toreci, H., 1966, Structure of mutator phage Mu-1 of Es-cherichi coli, J. Ujtrastruct. Res. 14: 441.CrossRefGoogle Scholar
  223. Tolias, P. P., and DuBow, M. S., 1985, The cloning and characterization of the bacteriophage D108 regulatory DNA-binding protein ner, EMBO J. 4: 3031.PubMedGoogle Scholar
  224. Tolias, P. P., and DuBow, M. S., 1986, The overproduction and characterization of the bacteriophage Mu regulatory DNA-binding protein ner, Virology 148: 293.CrossRefGoogle Scholar
  225. Torti, F., Barksdale, C., and Abelson, J., 1970, Mu-1 bacteriophage DNA, Virology 41: 567.PubMedCrossRefGoogle Scholar
  226. Toussaint, A., 1969, Insertion of phage Mu-1 within prophage lambda: A new approach for studying the control of the late functions in bacteriophage lambda, Mol. Gen. Genet. 106: 89.PubMedCrossRefGoogle Scholar
  227. Toussaint, A., 1976, The DNA modification of temperate phage Mu-1, Virology 70: 17.PubMedCrossRefGoogle Scholar
  228. Toussaint, A., 1977, The modification of bacteriophage Mu-1 requires both a bacterial and a phage function, /. Virol. 23: 825.Google Scholar
  229. Toussaint, A., and Faelen, M., 1973, Connecting two unrelated DNA sequences with a Mu dimer, Nature New Biol. 242: 1.PubMedCrossRefGoogle Scholar
  230. Toussaint, A., and Lecocq, J.-P., 1974, Sensitivity of bacteriophage Mu-1 development to rifampicin and streptolydigin, Mol. Gen. Genet. 129: 185.PubMedCrossRefGoogle Scholar
  231. Toussaint, A., and Resibois, A., 1983, Phage Mu: Transposition as a life style, in Mobile Genetic Elements ( J. A. Shapiro, ed.), pp. 105–158, Academic Press, New York.Google Scholar
  232. Toussaint, A., Faelen, M., and Bukhari, A. I., 1977, Mu mediated illegitimate recombination as an integral part of the Mu life cycle, in DNA Insertion Elements, Plasmids, and Episomes (A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 275–285, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  233. Toussaint, A., LeFebvre, N., Scott, J. R., Cowan, J. A., De Bruijn, F., and Bukhari, A. I., 1978, Relationship between temperate phages Mu and P1, Virology 89: 146.PubMedCrossRefGoogle Scholar
  234. Toussaint, A., Desmet, L., and Faelen, M., 1980, Mapping of the modification function of temperature phage Mu-1, Mol. Gen. Genet. 177: 351.PubMedCrossRefGoogle Scholar
  235. Toussaint, A., Faelen, M., Desmet, L., and Allet, B., 1983, The products of gene A of related phages Mu and D108 differ in their specificities, Mol. Gen. Genet. 190: 70.PubMedCrossRefGoogle Scholar
  236. Van de Putte, P., and Gruijthuijsen, M., 1972, Chromosome mobilization and integration of F-factors in the chromosome of recA stains of E. coli under the influence of bacteriophage Mu-1, Mol. Gen. Genet. 118: 173.Google Scholar
  237. Van de Putte, P., Westmaas, G. C., Giphart, M., and Wijffelman, C., 1977a, On the kil gene of bacteriophage Mu, in DNA Insertion Elements, Plasmids, and Episomes ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 287–294, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  238. Van de Putte, P., Westmaas, G. C., and Wijffelman, C., 1977b, Transfection with Mu DNA, Virology 81: 152.CrossRefGoogle Scholar
  239. Van de Putte, P., Giphart-Gassler, M., Goosen, T., Van Meeteren, A., and Wijffelman, C., 1978, in Integration and Excision of DNA Molecules (P. Hofshneider and P. Starlinger, eds.), pp. 33–40, Springer-Verlag, Berlin.Google Scholar
  240. Van de Putte, P., Cramer, S., and Giphart-Gassler, M., 1980, Invertible DNA determines host specificity of bacteriophage Mu, Nature 286: 218.CrossRefGoogle Scholar
  241. Van Gijsegem, F., Toussaint, A., and Casadaban, M., 1987, Mu as a genetic tool, in: Phage Mu ( N. Symonds, A. Toussaint, P. Van de Putte, and M. M. Kowe, eds.), pp. 215–250, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  242. Van Leerdam, E., Karreman, C., and Van de Putte, P., 1982, Ner, a Cro-like function of bacteriophage Mu, Virology 123: 19.PubMedCrossRefGoogle Scholar
  243. Van Meeteren, A., 1980, Transcription of bacteriophage Mu, Ph.D. thesis, Rijks Universiteit, Leiden, The Netherlands.Google Scholar
  244. Van Meeteren, A., Giphart-Gassler, M., and Van de Putte, P., 1980, Transcription of bacte- riophage Mu II: Transcription of the repressor gene, Mol. Gen. Genet. 179: 185.PubMedCrossRefGoogle Scholar
  245. Van Vliet, F., Couturier, M., Desmet, L., Faelen, M., and Toussaint, A., 1978a, Virulent mutants of temperate phage Mu-1, Mol. Gen. Genet. 160: 195.CrossRefGoogle Scholar
  246. Van Vliet, F., Couturier, M., de Lafonteyne, J., and Jedlicki, E., 1978b, Mu-1 directed inhibition of DNA breakdown in Escherichi coli, recA cells, Mol. Gen. Genet. 164: 109.Google Scholar
  247. Waggoner, B. T., and Pato, M. L., 1978, Early events in the replication of Mu prophage DNA, J. Virol. 27: 587.PubMedGoogle Scholar
  248. Waggoner, B. T., Gonzales, N. S., and Taylor, A. L., 1974, Isolation of heterogeneous circular DNA from induced lysogens of bacteriophage Mu-1, Proc. Natl. Acad. Sci. USA 71: 1255.PubMedCrossRefGoogle Scholar
  249. Waggoner, B. T., Pato, M. L., and Taylor, A. L., 1977, Characterization of covalently closed DNA molecules isolated after bacteriophage Mu induction, in DNA Insertion Elements, Plasmids, and Episomes (A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.(, pp. 263–274, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  250. Waggoner, B. T., Pato, M. L., Toussaint, A., and Faelen, M., 1981, Replication of mini-Mu prophage DNA, Virology 113, 379.PubMedCrossRefGoogle Scholar
  251. Waggoner, B. T., Marrs, C. F., Howe, M. M., and Pato, M. L., 1984, Multiple factors and processes involved in host cell killing by bacteriophage Mu: Characterization and mapping, Virology 136: 168.PubMedCrossRefGoogle Scholar
  252. Wagner, R. Jr., and Meselson, M., 1976, Repair tracts in mismatched DNA heterduplexes, Proc. Natl. Acad. Sci. USA 73: 4135.PubMedCrossRefGoogle Scholar
  253. Wijffelman, C. A., and Lotterman, B., 1977, Kinetics of Mu DNA synthesis, Mol. Gen. Genet. 151: 169.PubMedCrossRefGoogle Scholar
  254. Wijffelman, C. A., and Van de Putte, P., 1974, Transcription of bacteriophage Mu: An analysis of the transcription pattern in the early stage of the phage development, Mol. Gen. Genet. 135: 327.PubMedCrossRefGoogle Scholar
  255. Wijffelman, C. A., and Van de Putte, P., 1977, Asymmetric hybridization of Mu strands with short fragments synthesized during Mu DNA replication, in DNA Insertion Elements, Plasmids, and Episomes ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 329–333, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  256. Wijffelman, C. A., Westmaas, G C, and Van de Putte, P., 1972, Vegetative recombination of bacteriophage Mu-1 in E. coli, Mol. Gen. Genet. 116: 40.CrossRefGoogle Scholar
  257. Wijffelman, C. A., Westmaas, G. C., and Van de Putte, P., 1973, Similarity of vegetative map and prophage map of bacteriophage Mu-1, Virology 54: 125.PubMedCrossRefGoogle Scholar
  258. Wijffelman, C. A., Gassler, M., Stevens, W. F., and Van de Putte, P., 1974, On the control of transcription of bacteriophage Mu, Mol. Gen. Genet. 131: 85.PubMedCrossRefGoogle Scholar
  259. Wood, W. B., and King, J., 1979, Genetic control of complex bacteriophage assembly, Comp. Virol. 13: 581.Google Scholar
  260. Yun, T., and Vapnek, D., 1977, Electron microscopic analysis of bacteriophage P1, P1 Cm, and P7, Virology 77: 376.PubMedCrossRefGoogle Scholar
  261. Zeldis, J. B., Bukhari, A. I., and Zipser, D., 1973, Orientation of prophage Mu, Virology 55: 289.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Rasika M. Harshey
    • 1
  1. 1.Department of Molecular BiologyResearch Institute of Scripps ClinicLa JollaUSA

Personalised recommendations