Phages with Protein Attached to the DNA Ends

  • Margarita Salas
Part of the The Viruses book series (VIRS)

Abstract

The finding of specific proteins covalently linked to the 5’ ends of viral DNAs, the so-called terminal proteins, lead to the discovery of a new mechanism for the initiation of replication in which the primer, instead of being the 3’ OH group of a nucleotide provided by RNA or DNA molecules, is the OH group of a serine, threonine, or tyrosine residue of the terminal protein.

Keywords

Maize Recombination Serine Bacillus Streptomyces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bamford, D. H., and Mindich, L., 1984, Characterization of the DNA-protein complex at the termini of the bacteriophage PRD1 genome, J. Virol. 50:309–315.PubMedGoogle Scholar
  2. Bamford, D. H., McGraw, T., MacKenzie, G., and Mindich, L., 1983, Identification of a protein bound to the termini of bacteriophage PRD1 DNA, J. Virol. 47:311–316PubMedGoogle Scholar
  3. Barthelemy, I., Salas, M., and Mellado, R. P., 1986, In vivo transcription of bacteriophage 4)29 DNA. Transcription initiation sites, J. Virol. 60:874–879.PubMedGoogle Scholar
  4. Barthelemy, I., Lâzaro, J. M., Méndez, E., Mellado, R. P., and Salas, M., 1987a, Purification in an active form of the phage 4)29 protein p4 that controls the viral late transcription, Nucleic Acid Res. 15:7781–7793.CrossRefGoogle Scholar
  5. Barthelemy, I., Salas, M., and Mellado, R. P., 1987b, In vivo transcription of bacteriophage 4)29 DNA. Transcription termination, J. Virol. 61:1751–1755.Google Scholar
  6. Bjornsti, M. A., Reilly, B. E., and Anderson, D. L., 1981, In vitro assembly of the Bacillus subtilis bacteriophage 4)29, Proc. Natl. Acad. Sci. USA 78:5861–5865.PubMedCrossRefGoogle Scholar
  7. Bjomsti, M. A., Reilly, B. E., and Anderson, D. L., 1983, Morphogenesis of bacteriophage 4)29 of Bacillus subtilis: Oriented and quantized in vitro packaging of DNA-gp3, J. Virol. 45:383–396.Google Scholar
  8. Bjornsti, M. A., Reilly, B. E., and Anderson, D. L., 1984, Bacteriophage 4)29 proteins required for in vitro DNA-gp3 packaging, J. Virol. 50:766–772.PubMedGoogle Scholar
  9. Blanco, L., and Salas, M., 1984, Characterization and purification of a phage X29-encoded DNA polymerase required for the initiation of replication, Proc. Natl. Acad. Sci. USA 81:5325–5329.PubMedCrossRefGoogle Scholar
  10. Blanco, L., and Salas, M., 1985a, Characterization of a 3’—*5’ exonuclease activity in the phage 4)29—encoded DNA polymerase, Nucleic Acids Res. 13:1239–1249.CrossRefGoogle Scholar
  11. Blanco, L., and Salas, M., 1985b, Replication of phage X29 DNA with purified terminal protein and DNA polymerase: Synthesis of full-length 4)29 DNA, Proc. Natl. Acad. Sci. USA 82:6404–6408.CrossRefGoogle Scholar
  12. Blanco, L., and Salas, M., 1986, Effect of aphidicolin and nucleotide analogs on the phage 4..29 DNA polymerase, Virology 153:179–187.PubMedCrossRefGoogle Scholar
  13. Blanco, L., Garcia, J. A., Penalva, M. A., and Salas, M., 1983, Factors involved in the initiation of phage r1)29 DNA replication in vitro: Requirement of the gene 2 product for the formation of the protein p3-dAMP complex, Nucleic Acids Res. 11:1309–1323.PubMedCrossRefGoogle Scholar
  14. Blanco, L., Prieto, I., Gutierrez, J., Bernaod, A., Lazar, M., Hermoso, M., and Salas, M., 1987, Effect of NHS ions on X29 DNA-protein p3 replication: Formation of a complex between the terminal protein and the DNA polymerase, J. Virol. 61:3983–3991.PubMedGoogle Scholar
  15. Blanco, L., Garcia, J. A., and Salas, M., 1984, Cloning and expression of gene 2, required for the protein-primed initiation of the Bacillus subtilis phage ib29 DNA replication, Gene 29:33–40.PubMedCrossRefGoogle Scholar
  16. Blanco, L., Gutiérrez, J., Lazaro, J. M., Bernad, A., and Salas, M., 1986, Replication of phage (b29 DNA in vitro: Role of the viral protein p6 in initiation and elongation, Nucleic Acids Res. 14:4923–4937.PubMedCrossRefGoogle Scholar
  17. Carrascosa, J. L., Camacho, A., Moreno, F., Jiménez, F., Mellado, R. P., Vinuela, E., and Salas, M., 1976, Bacillus subtilis phage 4)29: Characterization of gene products and functions, Eur. J. Biochem. 66:229–241.PubMedCrossRefGoogle Scholar
  18. Daubert, S. D., and Bruening, G., 1984, Detection of genome-linked proteins of plants and animal viruses, Methods Virol. 8:347–379.Google Scholar
  19. Davis, T. N., and Cronan, E. J. Jr., 1983, Nonsense mutants of the lipid-containing bacteriophage PR4, Virology 126:600–613.PubMedCrossRefGoogle Scholar
  20. Dobinson, K. F., and Spiegelman, G. B., 1985, Nucleotide sequence and transcription of a bacteriophage 4)29 early promoter, J. Biol. Chem. 260:5950–5955.PubMedGoogle Scholar
  21. Escarmis, C., García, P., Méndez, E., Lopez, R., Salas, M., and Garcia, E., 1985, Inverted terminal repeats and terminal proteins of the genomes of pneumococcal phages, Gene 36:341–348.PubMedCrossRefGoogle Scholar
  22. Escarmis, C., Gómez, A., Garcia, E., Ronda, C., Lopez, R., and Salas, M., 1984, Nucleotide sequence at the termini of the DNA of Streptococcus pneumoniae phage Cp-1, Virology 133:166–171.PubMedCrossRefGoogle Scholar
  23. Escarmis, C., and Salas, M., 1981, Nucleotide sequence at the termini of the DNA of Bacillus subtilis phage 4)29, Proc. Natl. Acad. Sci. USA 78:1446–1450.PubMedCrossRefGoogle Scholar
  24. Escarmis, C., and Salas, M., 1982, Nucleotide sequence of the early genes 3 and 4 of bacteriophage 4)29, Nucleic Acids Res. 10:5785–5798.PubMedCrossRefGoogle Scholar
  25. Fucik, V., Grunow, E., Grünnerovâ, H., Hostomskÿ, Z., and Zadrazyl, S., 1980, New members of Bacillus subtilis phage group containing a protein link in their circular DNA, in: DNA: Recombination, Interactions and Repair (S. Zadrazyl and J. Sponar, eds.), pp. 111–118, Pergamon, New York.Google Scholar
  26. Garcia, E., Gómez, A., Ronda, C., Escarmis, C., and Lopez, R., 1983a, Pneumococcal bacteriophage Cp-1 contains a protein tightly bound to the 5’ termini of its DNA, Virology 128:92–104.CrossRefGoogle Scholar
  27. García, J. A., Pastrana, R., Prieto, I., and Salas, M., 1983b, Cloning and expression in Escherichia coli of the gene coding for the protein linked to the ends of Bacillus subtilis phage 4)29 DNA, Gene 21:65–76.CrossRefGoogle Scholar
  28. García, J. A., Penalva, M. A., Blanco, L., and Salas, M., 1984, Template requirements for the initiation of phage 4)29 DNA replication in vitro,Proc. Natl. Acad. Sci. USA 81:80–84.PubMedCrossRefGoogle Scholar
  29. García, P., Hermoso, J. M., García, J. A., García, E., Lopez, E., and Salas, M., 1986a, Formation of a covalent complex between the terminal protein of pneumococcal bacteriophage Cp-1 and 5’-dAMP, J. Virol. 58:31–35.Google Scholar
  30. Garcia, E., Ronda, C., Garcia, P., and Lopez, R., 1986b, Studies on the replication of bacterio- phage Cp-1 DNA in Streptococcus pneumoniae, Microbiologia 2:115–120.Google Scholar
  31. Garvey, K. J., Yoshikawa, H., and Ito, J., 1985, The complete sequence of the Bacillus phage 4)29 right early region, Gene 40:301–309.PubMedCrossRefGoogle Scholar
  32. Geiduschek, E. P., and Ito, J., 1982, Regulatory mechanisms in the development of lytic bacteriophages in Bacillus subtilis, in: The Molecular Biology of the Bacilli Vol. 1 (D. A. Dubnau, ed.), pp. 203–245, Academic Press, New York.Google Scholar
  33. Guo, P., Grimes, S., and Anderson, D. L., 1986, A defined system for in vitro packaging of DNA-gp3 of the Bacillus subtilis bacteriophage 4)29, Proc. Natl. Acad. Sci. USA 83:3505–3509.PubMedCrossRefGoogle Scholar
  34. Gutiérrez, J., Garcia, J. A., Blanco, L., and Salas, M., 1986a, Cloning and template activity of the origins of replication of phage 4)29 DNA, Gene 43:1–11.CrossRefGoogle Scholar
  35. Gutiérrez, J., Vinós, J., Prieto, I., Méndez, E., Hermoso, J. M., and Salas, M., 1986b, Signals in the 4)29 DNA–terminal protein template for the initiation of phage 4)29 DNA replication, Virology 155:474–483.CrossRefGoogle Scholar
  36. Hagen, E. W., Reilly, B. E., Tosi, M. E., and Anderson, D. L., 1976, Analysis of gene function of bacteriophage 4)29 of Bacillus subtilis: Identification of cistrons essential for viral assembly, J. Virol. 19:501–517.PubMedGoogle Scholar
  37. Harding, N. E., and Ito, J., 1980, DNA replication of bacteriophage 4)29: Characterization of the intermediates and location of the termini of replication, Virology 104:323–338PubMedCrossRefGoogle Scholar
  38. Henney, D. J., and Hoch, J. A., 1980, The Bacillus subtilis chromosome, Microbiol. Rev. 44:57–82.Google Scholar
  39. Hermoso, J. M., Mendez, E., Soriano, F., and Salas, M., 1985, Location of the serine residue involved in the linkage between the terminal protein and the DNA of 4)29, Nucleic Acids Res. 13:7715–7728.PubMedCrossRefGoogle Scholar
  40. Hermoso, J. M., and Salas, M., 1980, Protein p3 is linked to the DNA of phage 4)29 through a phosphoester bond between serine and 5’-dAMP, Proc. Natl. Acad. Sci. USA 77:6425–6428.PubMedCrossRefGoogle Scholar
  41. Herranz, L., Salas, M., and Carrascosa, J. L., 1986, Interaction of the bacteriophage 4)29 connector protein with the viral DNA, Virology 155:289–292.PubMedCrossRefGoogle Scholar
  42. Hirochika, H., and Sakaguchi, R., 1982, Analysis of linear plasmids isolated from Strep-tomyces: Association of protein with the ends of the plasmid DNA, Plasmdd 7:59–65CrossRefGoogle Scholar
  43. Hirokawa, H., 1972, Transfecting deoxyribonucleic acid of Bacillus bacteriophage 4)29, Proc. Natl. Acad. Sci. USA 69:1555–1559.PubMedCrossRefGoogle Scholar
  44. Hirokawa, H., Matsumoto, K., and Ohashi, M., 1982, Replication of Bacillus small phage DNA, in: Microbiology-1982 (D. Schlessinger, ed.), pp. 45–46, American Society for Microbiology, Washington.Google Scholar
  45. Huberman, J. A., 1981, New views of the biochemistry of eukaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase, Cell 23:647–648PubMedCrossRefGoogle Scholar
  46. Inciarte, M. R., Salas, M., and Sogo, J. M., 1980, Structure of replicating DNA molecules of Bacillus subtilis bacteriophage 4)29, J. Virol. 34:187–199.PubMedGoogle Scholar
  47. Ito, J., 1978, Bacteriophage 4)29 terminal protein: Its association with the 5’ termini of the 4)29 genome, J. Virol. 28:895–904.PubMedGoogle Scholar
  48. Khan, N. W., Wright, G. E., Dudycz, L. W., and Brown, N. C., 1984, Butylphenyl dGTP: A selective and potent inhibitor of mammalian DNA polymerase alpha, Nucleic Acids Res. 12:3695–3706.PubMedCrossRefGoogle Scholar
  49. Kemble, R. J., and Thompson, R. D., 1982, S1 and S2, the linear mitochondrial DNAs present in a male sterile line of maize, possess terminally attached proteins, Nucleic Acids Res. 10:8181–8190.PubMedCrossRefGoogle Scholar
  50. Kikuchi, Y., Hirai, K., and Hishinuma, F., 1984, The yeast linear DNA killer plasmids pGLK1 and pGLK2, possess terminally attached proteins, Nucleic Acids Res. 12:5685–5692.PubMedCrossRefGoogle Scholar
  51. Lechner, R. L., and Kelly, T. J. Jr., 1977, The structure of replicating adenovirus 2 DNA molecules, Cell 12:1007–1020.PubMedCrossRefGoogle Scholar
  52. Lopez, R., Ronda, C., García, P., Escarmís, C., and Garcia, E., 1984, Restriction cleavage maps of the DNAs of Streptococcus pneumoniae bacteriophages containing protein covalently bound to their 5’ ends, Mol. Gen. Genet. 197:67–74.PubMedCrossRefGoogle Scholar
  53. Matsumoto, K., Kim, C. I., Urano, S., Ohashi, H., and Hirokawa, H., 1986, Aphidicolinresistant mutants of bacteriophage 429: Genetic evidence for altered DNA polymerase, Virology 152:32–38.PubMedCrossRefGoogle Scholar
  54. Matsumoto, K., Saito, T., and Hirokawa, H., 1983, In vitro initiation of bacteriophage 429 and M2 DNA replication: Genes required for formation of a complex between the terminal protein and 5’dAMP, Mol. Gen. Genet. 191:26–30.PubMedCrossRefGoogle Scholar
  55. Matsumoto, K., Saito, T., Kim, C. I., Ando, T., and Hirokawa, H., 1984, Bacteriophage 529 DNA replication in vitro: Participation of the terminal protein and the gene 2 product in elongation, Mol. Gen. Genet. 196:381–386.PubMedCrossRefGoogle Scholar
  56. McGraw, T., Yang, H. L., and Mindich, L., 1983, Establishment of a physical and genetic map for bacteriophage PRD1, Mol. Gen. Genet. 190:237–244.PubMedCrossRefGoogle Scholar
  57. Mellado, R. P., and Salas, M., 1982, High level synthesis in Escherichia coli of the Bacillus subtilis phage 429 proteins p3 and p4 under the control of phage lambda P,, promoter, Nucleic Acids Res. 10:5773–5784.PubMedCrossRefGoogle Scholar
  58. Mellado, R. P., and Salas, M., 1983, Initiation of phage 429 DNA replication by the terminal protein modified at the carboxyl end, Nucleic Acids Res. 11:7397–7407.PubMedCrossRefGoogle Scholar
  59. Mellado, R. P., Moreno, F., Vinuela, E., Salas, M., Reilly, B. E., and Anderson, D. L., 1976, Genetic analysis of bacteriophage 4.29 of Bacillus subtilis: Integration and mapping of reference mutants of two collections, J. Virol. 19:495–500.PubMedGoogle Scholar
  60. Mellado, R. P., Penalva, M. A., Inciarte, M. R., and Salas, M., 1980, The protein covalently linked to the 5’ termini of the DNA of Bacillus subtilis phage 429 is involved in the initiation of DNA replication, Virology 104:84–96.PubMedCrossRefGoogle Scholar
  61. Mellado, R. P., Barthelemy, I., and Salas, M., 1986a, In vivo transcription of bacteriophage 429 DNA early and late promoter sequences, I. Mol. Biol. 191:191–197.CrossRefGoogle Scholar
  62. Mellado, R. P., Barthelemy, I., and Salas, M., 1986b, In vitro transcription of bacteriophage 4.29 DNA. Correlation between in vitro and in vivo promoters, Nucleic Acids Res. 14:4731–4741.CrossRefGoogle Scholar
  63. Mindich, L., Bamford, D., Goldthwaite, C., Laverty, M., and MacKenzie, G., 1982, Isolation of nonsense mutants of lipid-containing bacteriophage PRD1, j. Virol. 44:1013–1020.PubMedGoogle Scholar
  64. Moreno, F., Camacho, A., Vinuela, E., and Salas, M., 1974, Suppressor-sensitive mutants and genetic map of Bacillus subtilis bacteriophage 429, Virology 62:1–16.PubMedCrossRefGoogle Scholar
  65. Morrow, C. D., Hocko, J., Navab, M., and Dasgupta, A., 1984, ATP is required for initiation of poliovirus RNA synthesis in vitro: Demonstration of tyrosine-phosphate linkage between in vitro—synthesized RNA and genome-linked protein, I. Virol. 50:515–523.Google Scholar
  66. Ortfn, J., Vinuela, E., Salas, M., and Vasquez, C., 1971, DNA-protein complex in circular DNA from phage 429, Nature New Biol. 234:275–277.CrossRefGoogle Scholar
  67. Paces, V., Vlcek, C., Urbanek, P., and Hostomskÿ, Z., 1985, Nucleotide sequence of the major early region of Bacillus subtilis phage PZA, a close relative of 429, Gene 38:45–46.PubMedCrossRefGoogle Scholar
  68. Paces, V., Vlcek, C., and Urbanek, P., 1986a, Nucleotide sequence of the late region of Bacillus subtilis phage PZA, a close relative of phage 429, Gene 44:107–114.CrossRefGoogle Scholar
  69. Paces, V., Vlcek, C., Urbanek, P., and Hostomskÿ, Z., 1986b, Nucleotide sequence of the right early region of Bacillus subtilis phage PZA completes the 19366-bp sequence of PZA genome. Comparison with the homologous sequence of phage 429, Gene 44:115–120.Google Scholar
  70. Pastrana, R., Lazaro, J. M., Blanco, L., Garcia, J. A., Méndez, E., and Salas, M., 1985, Over-production and purification of protein p6 of Bacillus subtilis phage +29: Role in the initiation of DNA replication, Nucleic Acids Res. 13:3083–3100.PubMedCrossRefGoogle Scholar
  71. Penalva, M. A., and Salas, M., 1982, Initiation of phage +29 DNA replication in vitro: Formation of a covalent complex between the terminal protein, p3, and 5’-dAMP, Proc. Natl. Acad. Sci. USA 79:5522–5526.PubMedCrossRefGoogle Scholar
  72. Prieto, I., Lâzaro, J. M., Garcia, J. A., Hermoso, J. M., and Salas, M., 1984, Purification in a functional form of the terminal protein of Bacillus subtilis phage +29, Proc. Natl. Acad. Sci. USA 81:1639–1643.PubMedCrossRefGoogle Scholar
  73. Prieto, I., Serrano, M., Lazaro, J. M., Salas, M., and Hermoso, J. M., 1988, Interaction of the bacteriophage +29 protein p6 with double-stranded DNA, Proc. Natl. Acad. Sci. U.S.A. 85 (in press).Google Scholar
  74. Rekosh, D. M. K., Russell, W. C., Bellett, A. J. D., and Robinson, A. J., 1977, Identification of a protein linked to the ends of adenovirus DNA, Cell 11:283–295.PubMedCrossRefGoogle Scholar
  75. Ronda, C., Lopez, R., Gómez, A., and Garcia, E., 1983, Protease-sensitive transfection of Streptococcus pneumoniae with bacteriophage Cp-1 DNA, J. Virol. 48:721–730.PubMedGoogle Scholar
  76. Salas, M., 1983, A new mechanism for the initiation of replication of +29 and adenovirus DNA: Priming by the terminal protein, Curr. Top. Microbiol. Immunol. 109:89–106.CrossRefGoogle Scholar
  77. Salas, M., Mellado, R. P., Vinuela, E., and Sogo, J. M., 1978, Characterization of a protein covalently linked to the 5’ termini of the DNA of Bacillus subtilis phage +29, J. Mol. Biol. 119:269–291.PubMedCrossRefGoogle Scholar
  78. Salas, M., Prieto, I., Gutiérrez, J., Blanco, L., Zaballos, A., Lâzaro, J. M., Martin, G., Bemad, A., Garmendia, C., Mellado, R. P., Escarmís, C., and Hermoso, J. M., 1986, Replication of phage +29 DNA primed by the terminal protein, in: Mechanisms of DNA Replication and Recombination, UCLA Symposia on Molecular and Cellular Biology, New Series (T. Kelly and R. McMacken (eds.), Vol. 47, Alan R. Liss, New York.Google Scholar
  79. Savilahti, H., and Bamford, D. H., 1986, Linear $DNA replication: Inverted terminal repeats of five closely related Escherichia coli bacteriophages, Gene 49:199–205.PubMedCrossRefGoogle Scholar
  80. Schachtele, C. F., De Sain, C. V., and Anderson, D. L., 1973, Transcription during the development of bacteriophage +29: Definition of early and late ribonucleic acid, J. Virol. 11:9–16.PubMedGoogle Scholar
  81. Shih, M. F., Watabe, K., and Ito, J. 1982, In vitro complex formation between bacteriophage +29 terminal protein and deoxynucleotide, Biochem. Biophys. Res. Commun. 105:1031–1036.Google Scholar
  82. Shih, M. F., Watabe, K., Yoshikawa, H., and Ito, J., 1984, Antibodies specific for the +29 terminal protein inhibit the initiation of DNA replication in vitro,Virology 133:56–64.PubMedCrossRefGoogle Scholar
  83. Sogo, J. M., Inciarte, M. R., Corral, J., Vinuela, E., and Salas, M., 1979, RNA polymerase binding sites and transcription map of the DNA of Bacillus subtilis phage +29, J. Mol. Biol. 127:411–436.PubMedCrossRefGoogle Scholar
  84. Sogo, J. M., Garcia, J. A., Penalva, M. A., and Salas, M., 1982, Structure of protein-containing replicative intermediates of Bacillus subtilis phage $29 DNA, Virology 116:1–18PubMedCrossRefGoogle Scholar
  85. Stillman, B. W., 1983, The replication of adenovirus DNA with purified proteins, Cell 35:7-9.PubMedCrossRefGoogle Scholar
  86. Talavera, A., Jiménez, F., Salas, M., and Vinuela, E., 1971, Temperature-sensitive mutants of bacteriophage +29, Virology 46:586–595.PubMedCrossRefGoogle Scholar
  87. Talavera, A., Salas, M., and Vinuela, E., 1972, Temperature-sensitive mutants affected in DNA synthesis in phage $29 of Bacillus subtilis, Eur. J. Biochem. 31:367–371.PubMedCrossRefGoogle Scholar
  88. Vartapetian, A. B., Koonin, E. V., Agol, V. I., and Bogdanov, A. A., 1984, Encephalomyocarditis virus RNA synthesis in vitro is protein-primed. EMBO J 3:2593–2598.PubMedGoogle Scholar
  89. Vléek, C., and Paces, V., 1986, Nucleotide sequence of the late region of Bacillus phage +29 completes the 19285-bp sequence of $29 genome. Comparison with the homologous sequence of phage PZA, Gene 46:215–225.CrossRefGoogle Scholar
  90. Watabe, K., and Ito, J., 1983, A novel DNA polymerase induced by Bacillus subtilis phage +29, Nucleic Acids Res. 11:8333–8342.PubMedCrossRefGoogle Scholar
  91. Watabe, K., Shih, M. F., Sugino, A., and Ito, J., 1982, In vitro replication of bacteriophage +29 DNA, Proc. Natl. Acad. Sci. USA 79:5245–5248.PubMedCrossRefGoogle Scholar
  92. Watabe, K., Shih, M. F., and Ito, J., 1983, Protein-primed initiation of phage X29 DNA replication, Proc. Natl. Acad. Sci. USA 80:4248–4252.PubMedCrossRefGoogle Scholar
  93. Watabe, K., Leusch, M., and Ito, J., 1984a, Replication of bacteriophage 4)29 DNA in vitro: The roles of terminal protein and DNA polymerase, Proc. Natl. Acad. Sci. USA 81:5374–5378.CrossRefGoogle Scholar
  94. Watabe, K., Leusch, M., and Ito, J., 1984b, A 3’ to 5’ exonuclease activity is associated with phage (1)29 DNA polymerase, Biochem. Biophys. Res. Commun. 123:1019–1026CrossRefGoogle Scholar
  95. Yanofsky, S., Kawamura, F., and Ito, J., 1976, Thermolabile transfecting DNA from tem-perature-sensitive mutant of phage X29, Nature 259:60–63.PubMedCrossRefGoogle Scholar
  96. Yehle, C. O., 1978, Genome-linked protein associated with the 5’ termini of bacteriophage X29 DNA, /. Virol. 27:776–783.Google Scholar
  97. Yoshikawa, H., and Ito, J., 1981, Terminal proteins and short inverted terminal repeats of the small Bacillus bacteriophage genomes, Proc. Natl. Acad. Sci. USA 78:2596–2600PubMedCrossRefGoogle Scholar
  98. Yoshikawa, H., and Ito, J., 1982, Nucleotide sequence of the major early region of bacterio-phage 4,29, Gene 17:323–335.PubMedCrossRefGoogle Scholar
  99. Yoshikawa, H., Friedmann, T., and Ito, J., 1981, Nucleotide sequences at the termini of 43.29 DNA, Proc. Natl. Acad. Sci. USA 78:1336–1340.PubMedCrossRefGoogle Scholar
  100. Yoshikawa, H., Garvey, K. J., and Ito, J., 1985, Nucleotide sequence analysis of DNA replication origins of the small Bacillus bacteriophages: Evolutionary relationships, Gene 37:125–130.PubMedCrossRefGoogle Scholar
  101. Zaballos, A., Salas, M., and Mellado, R. P., 1986, Initiation of phage X29 DNA replication by deletion mutants at the carboxyl end of the terminal protein, Gene 43:103–110.PubMedCrossRefGoogle Scholar
  102. Zaballos, A., Mellado, P., and Salas, M., 1988, Initiation of phage 4)29 DNA replication by mutants with deletions at the amino end of the terminal protein, Gene (in press).Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Margarita Salas
    • 1
  1. 1.Centro de Biología Molecular (CSIC-UAM)Universidad Autónoma, Canto BlancoMadridSpain

Personalised recommendations