Single-Stranded RNA Bacteriophages

  • Jan van Duin
Part of the The Viruses book series (VIRS)


Since their discovery in 1961 by Loeb and Zinder, the RNA phages have served as a model system to explore a variety of problems in molecular biology. As a source of homogeneous and readily obtainable messenger RNA, they have been particularly helpful in solving questions on initiation of translation, and they have provided good insight into regulation of gene expression at the level of translation. The concepts of translational polarity and translational control by repressor proteins resulted from early studies on bacteriophage RNA.


Coat Protein Maturation Protein Lysis Gene Replicase Gene Start Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins, J. F., Steitz, J. A., Anderson, C. W., and Model, P., 1979, Binding of mammalian ribosomes to MS2 phage RNA reveals an overlapping gene encoding a lysis function, Cell 18: 247.PubMedCrossRefGoogle Scholar
  2. Banerjee, A. K., Rensing, U., and August, J. T., 1969, Replication of RNA viruses. X. Replication of a natural 6S RNA by the Qß RNA polymerase, J. Mol. Biol. 45: 181.PubMedCrossRefGoogle Scholar
  3. Bear, D. G., Ng, R., Van der Veer, D., Johnson, N. P., Thomas, G., Schleich, T., and Noller, H. F., 1976, Alteration of polynucleotide secondary structure by ribosomal protein Si, Proc. Natl. Acad. Sci. USA 73: 1824.PubMedCrossRefGoogle Scholar
  4. Bendis, I., and Shapiro, L., 1970, Properties of Caulobacter RNA bacteriophage diCb5, J. Virol. 6: 847.PubMedGoogle Scholar
  5. Beremand, M. W., and Blumenthal, T., 1979, Overlapping genes in RNA phage: A new protein implicated in cell lysis, Cell 18: 257.PubMedCrossRefGoogle Scholar
  6. Berkhout, B., 1986, Translational control mechanisms in RNA bacteriophage MS2, Ph.D. thesis, University of Leiden.Google Scholar
  7. Berkhout, B., and Van Duin, J., 1985, Mechanism of translational coupling between coat protein and replicase genes of RNA bacteriophage MS2, Nucleic Acids Res. 13: 6955.PubMedCrossRefGoogle Scholar
  8. Berkhout, B., Kastelein, R. A., and Van Duin, J., 1985a, Translational interference at overlapping reading frames in prokaryotic messenger RNA, Gene 37: 171.PubMedCrossRefGoogle Scholar
  9. Berkhout, B., De Smith, M. H., Spanjaard, R. A., Blom, T., and Van Duin, J., 1985b, The amino terminal half of the MS2-coded lysis protein is dispensable for function: Implications for our understanding of coding region overlaps, EMBO J. 4: 3315.PubMedGoogle Scholar
  10. Berkhout, B., Schmidt, B. F., Van Strien, A., Van Boom, J. H., Van Westrenen, J., and Van Duin, J., 1987, Lysis gene of bacteriophage mS2 is activated by translation termination at the overlapping coat gene, J. Mol. Biol. 195: 517.PubMedCrossRefGoogle Scholar
  11. Berzin, V., Cielens, I., Jansone, I., and Gren, E. J., 1982, The regulatory region of phage fr replicase cistron. III. Initiation activity of specific fr RNA fragments, Nucleic Acids Res. 10: 7763.PubMedCrossRefGoogle Scholar
  12. Berzin, V., Awots, A., Jansone, I., and Zimanis, A., 1986, Primary structure of a cDNA fragment of phage fr, Bioorg. Khim. 12: 149 (in Russian).PubMedGoogle Scholar
  13. Biebricher, C. K., Eigen, M., and Luce, R., 198la, Product analysis of RNA generated de novo by QJ3 replicase, J. Mol. Biol. 148: 369.Google Scholar
  14. Biebricher, C. K., Eigen, M., and Luce, R., 1981 b, Kinetic analysis of template-instructed and de novo RNA synthesis by Qß replicase, J. Mol. Biol. 148: 391.Google Scholar
  15. Biebricher, C. K., Eigen, M., and Luce, R., 1986, Template-free RNA synthesis by Q 1 replicase, Nature 321: 89.PubMedCrossRefGoogle Scholar
  16. Blumenthal, T., 1977, Interaction of Q 3 replicase with guanine nucleotides. Different modes of inhibition and inactivation, Biochim. Biophys. Acta 478: 201.PubMedGoogle Scholar
  17. Blumenthal, T., and Carmichael, G. G., 1979, RNA replication: Function and structure of Q3 replicase, Annu. Rev. Biochem. 48: 525.PubMedCrossRefGoogle Scholar
  18. Blumenthal, T., Landers, T. A., and Weber, K., 1972, Bacteriophage Q(3 replicase contains the protein biosynthesis elongation factors EF-Tu and EF-Ts, Proc. Natl. Acad. Sci. USA 69: 1313.PubMedCrossRefGoogle Scholar
  19. Boni, I. V., Isaeva, D. M., and Budowsky, E. I., 1986, Ribosomal protein Si binds to the internal region of the replicase gene within the complex of E. coli 30S ribosomal subunit with MS2 phage RNA, Bioorg. Khim. 12: 293 (in Russian).PubMedGoogle Scholar
  20. Borisova, G. P., Volkova, T. M., Berzin, V., Rosenthal, G., and Gren, E. J., 1979, The regulatory region of MS2 phage RNA replicase cistron. IV. Functional activity of specific MS2 RNA fragments in formation of the 70S initiation complex of protein biosynthesis, Nucleic Acids Res. 6: 1761.PubMedCrossRefGoogle Scholar
  21. Bradley, D. E., 1966, The structure and infective process of a Pseudomonas aeruginosa bacteriophage containing ribonucleic acid, J. Gen. Microbiol. 45: 83.Google Scholar
  22. Brown, S., and Blumenthal, T., 1976, Reconstitution of Qß RNA replicase from a covalently bonded elongation factor TuTs complex, Proc. Natl. Acad Sci. USA 73: 1131.PubMedCrossRefGoogle Scholar
  23. Bujarski, J. J., and Kaesberg, P., 1986, Genetic recombination between RNA components of a multipartite plant virus, Nature 321: 528.PubMedCrossRefGoogle Scholar
  24. Capecchi, M. R., and Webster, R. E., 1975, Bacteriophage RNA as template for in vitro protein synthesis, in: RNA Phages ( N. D. Zinder, ed.), p. 279, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  25. Carey, J., Cameron, V., Krug, M., De Haseth, P. L., and Uhlenbeck, O. C., 1984, Failure of translational repression in phage f2 op3 mutant is not due to an altered coat protein-RNA interaction, J. Biol. Chem. 259: 20.PubMedGoogle Scholar
  26. Christiansen, J., Douthwaite, S. R., Christensen, A., and Garret, R. A. 1985, Does unpaired adenosine-66 from helix II of E. coli 5S bind to protein L18?, EMBO J. 4: 1019.PubMedGoogle Scholar
  27. Cone, K. C., and Steege, D. A., 1985a, Messenger RNA conformation and ribosome selection of translation reinitiation sites in the lac repressor mRNA, J. Mol. Biol. 186: 725.PubMedCrossRefGoogle Scholar
  28. Cone, K. C., and Steege, D. A., 1985b, Functional analysis of lac repressor restart sites in translational initiation and reinitiation, J. Mol. Biol. 186: 733.PubMedCrossRefGoogle Scholar
  29. Crowther, R. A., Amost, L. A., and Finch, J. T., 1975, Three dimensional image reconstructions of bacteriophages R17 and f2, J. Mol. Biol. 98: 631.PubMedCrossRefGoogle Scholar
  30. Das, A., and Yanofsky, 1984, A ribosome-binding sequence is necessary for efficient expression of the distal gene of a translationally coupled gene pair, Nucleic Acids Res. 12: 4757.PubMedCrossRefGoogle Scholar
  31. Davis, J. W., and Benike, C., 1974, Translation of virus mRNA: Synthesis of bacteriophage PP7 proteins in cell free extracts from Pseudomonas aeruginosa, Virology 61: 450.CrossRefGoogle Scholar
  32. Dhaese, P., Vanderkerckhove, J., Vingerhoed. J. P., and Van Montagu, M., 1977, Studies on PRR1, an RNA bacteriophage with broad host range, Arch. Int. Physiol. Biochim. 85: 168.PubMedCrossRefGoogle Scholar
  33. Domingo, E., Sabo, D., Taniguchi, T., and Weissmann, C, 1978, Nucleotide sequence heterogeneity of an RNA phage population, Cell 13: 735.PubMedCrossRefGoogle Scholar
  34. El-Baradi, T. T. A. L., Raué, H. A., De Regt, V. C. H. F., Verbree, E. C., and Planta, R. J., 1985, Yeast ribosomal protein L25 binds to an evolutionary conserved site an yeast 26S and E. coli 23S rRNA, EMBO J. 4: 2101.PubMedGoogle Scholar
  35. Feary, T. W., Fisher, E. Jr., and Fisher, T. N., 1963, A small RNA containing Pseduomonas aerguinosa bacteriophage, Biochem. Biophys. Res. Commun. 10: 359.PubMedCrossRefGoogle Scholar
  36. Feary, T. W., Fisher, E. Jr., and Fisher, T. N., 1964, Isolation and preliminary characteristics of three bacteriophages associated with a lysogenic strain of Pseudomonas aeruginosa, J. Bacteriol. 87: 196.PubMedGoogle Scholar
  37. Federoff, N., 1975, Replicase of the phage f2, in: RNA Phages ( N. D. Zinder, ed.), p. 235, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  38. Fiers, W., 1979, RNA Bacteriophages, in: Comprehensive Virology, Vol. 13 ( H. FraenkelConrat and R. R. Wagner, eds.), p. 69, Plenum Press, New York.Google Scholar
  39. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Merregaert, J., Min Jou, W., Raey- maekers, A., Volckaert, G., Ysebaert, M., Van der Kerckhove, J., Nolf, F., and Van Montagu, M., 1975, A-protein gene of bacteriophage MS2, Nature (Lond.) 256: 273.CrossRefGoogle Scholar
  40. Fiers, W., Contreras, R., Duerinck, F., Haegeman, G., Iserentant, D., Merregaert, J., Min Jou, W., Molemans, F., Raeymakers, A., Vandenberghe, A., Volckaert, G., and Isebaert, M., 1976, Complete nucleotide sequence of bacteriophage MS2-RNA: Primary and secondary structure of the replicase gene, Nature (Lond.) 260: 500.CrossRefGoogle Scholar
  41. Franze de Fernandez, M. T., Eoyang, L., and August, J. T., 1968, Factor fraction required for the synthesis of bacteriophage Qß RNA, Nature 219: 588.Google Scholar
  42. Fukami, Y., and Haruna, I., 1979, Template specifitiy of Qß and SP phage RNA replicases as studied by replication of small variant RNAs, Mol. Gen. Genet. 169: 173.PubMedCrossRefGoogle Scholar
  43. Fukuma, I., and Cohen, S. S., 1975, Polyamines in bacteriophage R17 and its RNA, /. Virol. 16: 222.Google Scholar
  44. Furuse, K., 1982, Phylogenetic studies on RNA coliphages, J. Keio Med. Soc. 59: 265.Google Scholar
  45. Furuse, K., 1987, Distribution of coliphages in the environment: General considerations, in: Phage Ecology ( S. M. Goyal, ed.), p. 87. John Wiley and Sons, New York.Google Scholar
  46. Furuse, K., Sakurai, T., Hirashima, A., Katsuki, M., Ando, A., and Watanabe, I., 1978, Distribution of RNA coliphages in south and east Asia, Appl. Environ. Microbiol. 35: 995.PubMedGoogle Scholar
  47. Garrett, R. A., Vester, B., Leffers, H., Sorensen, P. M., Kjems, J., Olesen, S. O., Christensen, A., Christiansen, J., and Douthwaite, S., 1984, Mechanisms of protein-RNA recognition and assembly in ribosomes, in: Gene Expression, Alfred Benson Symposium 19 (B. F. C. Clark and H. U. Petersen, eds.l, p. 331, Munksgaard, Copenhagen.Google Scholar
  48. Goelz, S., and Steitz, J. A., 1977, Escherichia coli ribosomal subunit Si recognizes two sites in bacteriophage Qß RNA, J. Biol. Chem. 252: 5177.PubMedGoogle Scholar
  49. Gralla, J., Steitz, J. A., and Crothers, D. M., 1974, Direct physical evidence for secondary structure in an isolated fragment of R17 bacteriophage mRNA, Nature 240: 204.CrossRefGoogle Scholar
  50. Havelaar, A. H., Hogeboom, W. M., and Pot, R., 1984, F specific RNA bacteriophages in sewage: Methodology and occurrence, Wat. Sci. Tech. 17: 645.Google Scholar
  51. Hilbers, C. W., Shulman, R. G., Yamane, T., and Steitz, J. A., 1974, High resolution proton NMR study of an isolated fragments of R17 bacteriophage mRNA, Nature 248: 225.PubMedCrossRefGoogle Scholar
  52. Hill, D., and Blumenthal, T., 1983, Does Q13 replicase synthesize RNA in the absence of template? Nature 301: 350.PubMedCrossRefGoogle Scholar
  53. Hindley, J., and Saples, D. H., 1969, Sequence of a ribosome binding site in bacteriophage Q13 RNA, Nature 224: 964.PubMedCrossRefGoogle Scholar
  54. Hofstetter, H., Monstein, H. J., and Weissmann, C., 1974, The read-through protein Al is essential for the formation of viable Qß particles, Biochim. Biophys. Acta 374: 238.PubMedGoogle Scholar
  55. Horiuchi, K., and Matsuhashi, S., 1970, Three cistrons in bacteriophage Q13, Virology 42: 49.PubMedCrossRefGoogle Scholar
  56. Inokuchi, Y., Takahashi, R., Hirose, T., Inayama, S, Jacobson, B., and Hirashima, A., 1986, The complete nucleotide sequence of group II RNA coliphage GA, J. Biochem. 99: 1169.PubMedGoogle Scholar
  57. Inouye, H., Pollack, Y., and Petre, J., 1974, Physical and functional homology between ribosomal protein S1 and interference factor i, Eur. J. Biochem. 45: 109.PubMedCrossRefGoogle Scholar
  58. Jacobson, A. B., Kumar, H., and Zuker, M., 1985, Effect of sperimidine on the conformation of bacteriophage MS2 RNA. Electron microscopy and computer modeling, J. Mol. Biol. 181: 517.PubMedCrossRefGoogle Scholar
  59. Jennings, P. A., Firsch, J. T., Winter, G., and Robertson, J. S., 1983, Does the higher order structure of the influenza virus ribonucleoprotein guide sequence arrangements in influenza viral RNA? Cell 34: 619.PubMedCrossRefGoogle Scholar
  60. Kamen, R., Kondo, M., Romer, W., and Weissmann, C., 1972, Reconstitution of Q(3 replicase lacking subunit a with protein-synthesis-interference factor i, Eur. J. Biochem. 31: 44.PubMedCrossRefGoogle Scholar
  61. Kamen, R. I., 1975, Structure and function of the Qß replicase, in: RNA Phages ( N. D. Zinder, ed.), p. 203, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  62. Karnik, S., and Billeter, M., 1983, The lysis function of RNA bacteriophage Q13 is mediated by the maturation (A2) protein, EMBO J. 2: 1521.PubMedGoogle Scholar
  63. Kastelein, R. A., Remaut, E., Fiers, W., and Van Duin, J., 1982, Lysis gene expression of RNA phage MS2 depends on a frameshift during translation of the overlapping coat protein gene, Nature 295: 35.PubMedCrossRefGoogle Scholar
  64. Kastelein, R. A., Berkhout, B., and Van Duin, J., 1983a, Opening the closed ribosome-binding site of the lysis cistron of bacteriophage MS2, Nature 305: 741.PubMedCrossRefGoogle Scholar
  65. Kastelein, R. A., Berkhout, B., Overbeek, G. P., and Van Duin, J., 1983b, Effect of the sequences upstream from the ribosome-binding site on the yield of protein from the cloned gene for phage MS2 coat protein, Gene 23: 245.PubMedCrossRefGoogle Scholar
  66. Kolakofsky, D., and Weissmann, C., 1971, Possible mechanism for transition of viral RNA from polysome to replication complex, Nature New Biol. 231: 42.PubMedCrossRefGoogle Scholar
  67. Kolb, A., Hermoso, J. M., Thomas, J. O., and Szer, W., 1977, Nucleic acid unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes, Proc. Natl. Acad. Sci. USA 74: 2397.CrossRefGoogle Scholar
  68. Kozak, M., 1984, Selection of initiation sites by eukaryotic ribosomes: Effect of inserting AUG triplets upstream from the coding sequence for preproinsulin, Nucleic Acids Res. 12: 3873.PubMedCrossRefGoogle Scholar
  69. Krahn, P. M., O’Callaghan, R. J., and Paranchych, W., 1972, Stages in phage R17 infection. VI. Injection of A protein and RNA into the host cell, Virology 47: 628.PubMedCrossRefGoogle Scholar
  70. Kramer, F. R., Mills, D. R., Cole, P. E., Nishihara, T., and Spiegelman, S., 1974, Evolution in vitro: Sequence and phenotype of a mutant RNA resistant to ethidium bromide, J. Mol. Biol. 89: 719.PubMedCrossRefGoogle Scholar
  71. Krueger, R. G., 1969, Serological relatedness of the ribonucleic acid—containing coliphages, J. Virol. 4: 567.PubMedGoogle Scholar
  72. Landers, T. A., Blumenthal, T., and Weber, K., 1974, Function and structure of RNA phage Q13 replicase, J. Biol. Chem. 249: 5801.PubMedGoogle Scholar
  73. Leipold, B., and Hofschneider, P. H., 1975, Isolation of an infectious RNA-A protein complex from the bacteriophage M12, FEBS Lett. 55: 50.PubMedCrossRefGoogle Scholar
  74. Lin, L., and Schmidt, J., 1972, Adsorption of a ribonucleic acid bacteriophage of Pseudomonas aeruginosa, Arch. Microbiol. 83: 120.Google Scholar
  75. Lodish, H. F., 1975, Regulation of in vitro protein synthesis by bacteriophage RNA by RNA tertiary structure, in: RNA Pliages ( N. D. Zinder, ed.), p. 301, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  76. Loeb, T., and Zinder, N. D., 1961, A bacteriophage containing RNA, Proc. Natl. Acad. Sci. USA 47: 282.PubMedCrossRefGoogle Scholar
  77. Looman, A. C., 1986, Effects of heterologous ribosomal binding sites on the expression of the lacZ gene of E. coli, PhD thesis, University of Leiden.Google Scholar
  78. Looman, A. C., and Van Knippenberg, P. H., 1986, Effects of GUG and AUG initiation codons on the expression of lacZ in E. coli, FEBS Lett. 197: 315.PubMedCrossRefGoogle Scholar
  79. Lowary, P. T., and Uhlenbeck, O. C., 1987, An RNA mutation that increases the affinity of an RNA—protein interaction, Nucleic Acids Res. 15: 10483.PubMedCrossRefGoogle Scholar
  80. Mekler, P., 1981, Determination of nucleotide sequences of the bacteriophage Qß genome: Organization and evolution of an RNA virus, PhD thesis, University of Zurich.Google Scholar
  81. Meyer, F., 1978, Structure and function of QJ3 replicase binding sites on Qß RNA, PhD thesis, University of Zurich.Google Scholar
  82. Meyer, F., Weber, H., and Weissmann, C., 1981, Interactions of Qß replicase with Qji RNA, J. Mol. Biol. 153: 631.PubMedCrossRefGoogle Scholar
  83. Mills, D. R., Peterson, R. L., and Speigelman, S., 1967, An extracellular Darwinian experiment with a self-duplicating nucleic acid molecule, Proc. Natl. Acad. Sci. USA 58: 217.PubMedCrossRefGoogle Scholar
  84. Mills, D. R., Kramer, F. R., and Spiegelman, S., 1973, Complete nucleotide sequence of a replicating RNA molecule, Science 180: 916.PubMedCrossRefGoogle Scholar
  85. Mills, D. R., Kramer, F. R., Dobkin, C., Nishihara, T., and Spiegelman, S., 1975, Nucleotide sequence of microvariant RNA: Another small replicating molecule, Proc. Natl. Acad. Sci. USA 72: 4252.PubMedCrossRefGoogle Scholar
  86. Mills, D. R., Bodkin, C., and Kramer, F. R., 1978, Template determined, variable rate of RNA chain elongation, Cell 15: 541.PubMedCrossRefGoogle Scholar
  87. Mills, D. R., Kramer, F. R., Dobkin, C., Nishihara, T., and Cole, P. E., 1980, Modification of cytidines in a Qß replicase template: Analysis of conformation and localization of lethal nucleotide substitutions, Biochemistry 19: 228.PubMedCrossRefGoogle Scholar
  88. Min Jou, W., Haegeman, G., Ysebaert, M., and Fiers, W., 1972, Nucleotide sequence of the gene coding for the bacteriophage MS2 coat protein, Nature (Lond.) 237: 82.CrossRefGoogle Scholar
  89. Model, P., Webster, R. E., and Zinder, N. D., 1979, Characterization of op3, a lysis defective mutant of bacteriophage f2, Cell 18: 235.PubMedCrossRefGoogle Scholar
  90. Munson, L. M., Stormo, G. D., Niece, R. L., and Reznikoff, W. S., 1984, LacZ translation initiation mutations, J. Mol. Biol. 177: 663PubMedCrossRefGoogle Scholar
  91. Napoli, C., Gold, L., and Swebelius Singer, B., 1981, Translational reinitiation in the rIIB gene of phage T4, J. Mol. Biol. 149: 433.PubMedCrossRefGoogle Scholar
  92. Nishihara, T., Mills, D. R., and Kramer, F. R., 1983, Localization of the Qß replicase recognition site in MDV-1 RNA, J. Biochem. 93: 669.PubMedCrossRefGoogle Scholar
  93. Nomura, M., Jinks-Robertson, S., and Miura, A., 1982, Regulation of ribosome biosynthesis in E. coli, in: Interaction of Translational and Transcriptional Controls in the Regulation of Gene Expression ( M. Grunberg-Manago and B. Safer, eds.), Elsevier, New York.Google Scholar
  94. Normark, S., Bergström, S., Edlund, T. Grundström, T., Jaurin, B., Lindberg, F. P., and Olsson, O., 1983, Overlapping genes, Annu. Rev. Genet. 17: 499.PubMedCrossRefGoogle Scholar
  95. Olson, R. H., and Thomas, D. D., 1973, Characteristics and purification of PRP1, an RNA phage specific for the broad host range Pseudomonas R1822 drug resistance plasmid, J. Virol. 12: 1560.Google Scholar
  96. Oppenheim, D. S., and Yanofsky, C., 1980, Translational coupling during expression of the tryptophan operon of E. coli, Genetics 95: 785.PubMedGoogle Scholar
  97. Paranchych, W., 1975, Attachment, ejection and penetration. Stages of the RNA phage infection process, in: RNA Phages ( N. D. Zinder, ed.), p. 85, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  98. Pley, C. W. A., Rietveld, K., and Bosch, L., 1985, A new principle of RNA folding based on pseudoknotting, Nucleic Acids Res. 12: 1717.Google Scholar
  99. Remaut, E., De Waele, P., Marmenout, A., Stanssens, P., and Fiers, W., 1982, Functional expression of individual plasmid-coded RNA bacteriophage MS2 genes, EMBO J. 1: 205.PubMedGoogle Scholar
  100. Robertson, H. D., 1975, Functions of replicating RNA in cells infected by RNA bacteriophages, in: RNA Phages ( N. D. Zinder, ed.), p. 113, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  101. Robertson, H. D., and Lodish, H. F., 1970, Messenger characteristics of nascent bacteriophage RNA, Proc. Natl. Acad. Sci. USA 67: 710.PubMedCrossRefGoogle Scholar
  102. Romaniuk, P. J., and Uhlenbeck, O. C., 1985, Nucleoside and nucleotide inactivation of R17 coat protein: Evidence for a transient covalent RNA-protein bond, Biochemistry 24: 4239.PubMedCrossRefGoogle Scholar
  103. Ryoji, M., Berland, R., and Kaji, A., 1981, Reinitiation of translation from the triplet next to the amber termination codon in the absence of ribosome-relasing factor, Proc. Natl. Acad. Sci. USA 78: 5973.PubMedCrossRefGoogle Scholar
  104. Schaffner, W., Ruegg, K. J., and Weissmann, C., 1977, Nanovariant RNA’s: Nucleotide sequence and interaction with bacteriophage Qß replicase, J. Mol. Biol. 117: 877.PubMedCrossRefGoogle Scholar
  105. Schmidt, B. F., Berkhout, B., Overbeek, G. P., Van Strien, A., and Van Duin, J., 1987, Determination of the RNA secondary structure that regulates lysis gene expression in bacteriophage MS2, J. Mol. Biol. 195: 505.CrossRefGoogle Scholar
  106. Schmidt, J. M., 1966, Observations on the adsorption of Caulobacter bacteriophages containing RNA, J. Gen. Microbiol. 45: 347.PubMedGoogle Scholar
  107. Schmidt, J. M., and Stanier, R. Y., 1965, Isolation and characterization of bacteriophage active against stalked bacteria, J. Gen. Microbiol. 39: 95.PubMedGoogle Scholar
  108. Schumperli, D., McKenney, K., Sobieski, D. A., and Rosenberg, M., 1982, Translational coupling at an intercistronic boundary of the E. coli galactose operon, Cell 30: 865.PubMedCrossRefGoogle Scholar
  109. Senear, A. W., and Steitz, J. A., 1976, Site-specific interaction of Qß host factor and ribosomal protein S1 with Qß and R17 bacteriophage RNA, I. Biol. Chem. 251: 1902.Google Scholar
  110. Shapiro, L., and Bendis, I., 1975, RNA phages of bacteria other than E. coli, in: RNA Phages ( N. D. Zinder, ed.), p. 397, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  111. Shepherd, J. C. W., 1981, Periodic correlations in DNA sequences and evidence suggesting their evolutionary origin in a comma-less genetic code, I. Mol. Evol. 17: 94.CrossRefGoogle Scholar
  112. Shiba, R., 1975, Reconstitution of an infectious complex in RNA phages, Proc. Mol. Biol. Meeting jpn., p. 4Google Scholar
  113. Shiba, T., and Miyake, T., 1975, New type of infectious complex of E. coli RNA phage, Nature (Lond.) 254: 157.CrossRefGoogle Scholar
  114. Shiba, R., and Suzuki, Y., 1981, Localization of A protein in the RNA-A protein complex of RNA phage MS2, Biochim. Biophys. Acta 654: 249.PubMedGoogle Scholar
  115. Steitz, J. A., 1969, Polypeptide chain initiation: Nucleotide sequences of the three ribosomal binding sites in bacteriophage R17, RNA, Nature 224: 957.PubMedCrossRefGoogle Scholar
  116. Steitz, J. A., 1979, Genetic signals and nucleotide sequences in messenger RNA, in: Biological Regulation and Development, Vol. 1: Gene Expression ( R. Goldberger, ed.), p. 349, Plenum Press, New York.Google Scholar
  117. Subramanian, A. R., 1983, Structure and functions on ribosomal protein 51, Progr. Nucl. Acids Res. Mol. Biol. 28: 101.CrossRefGoogle Scholar
  118. Sumper, M., and Luce, R., 1975, Evidence for de novo production of self-replicating and environmentally adapted RNA structure by bacteriophage Qß replicase, Proc. Natl. Acad. Sci. USA 72: 162.PubMedCrossRefGoogle Scholar
  119. Taniguchi, T, Palmieri, M., and Weissmann, C., 1978, Qß DNA-containing hybrid plasmids giving rise to Qß phage formation in the bacterial host, Nature 274: 223.PubMedCrossRefGoogle Scholar
  120. Travers, A., Kamen, R., and Schleif, R., 1970, Factor necessary for ribosomal RNA synthesis, Nature 228: 748.PubMedCrossRefGoogle Scholar
  121. Uhlenbeck, O. C., Carey, J., Romaniuk, P. J., Lowary, P. T., and Beckett, D., 1983, Interaction of R17 coat protein with its RNA binding site for translational repression, J. Biomol. Struct. Dyn. 1: 539.PubMedCrossRefGoogle Scholar
  122. Van Dieyen, G., Van der Laken, C. J., Van Knippenberg, P. H., and Van Duin, J., 1975, Function of E. coil ribosomal protein S1 in translation of natural and synthetic messenger RNA, J. Mol. Biol. 93: 351.CrossRefGoogle Scholar
  123. Van Dieyen, G., Van Knippenberg, P. H., and Van Duin, J., 1976, The specific role of ribosomal protein S1 in the recognition of native phage RNA, Eur. J. Biochem. 64: 511.CrossRefGoogle Scholar
  124. Van Dieyen, G., Zipori, P., Van Prooyen, W., and Van Duin, J., 1978, Involvement of ribosomal protein Si in the assembly of the initiation complex, Eur. J. Biochem. 90: 571.CrossRefGoogle Scholar
  125. Van Duin, J., Overbeek, G. P., and Backendorf, C., 1980, Functional recognition of phage RNA by 30S ribosomal subunits in the absence of initiator tRNA, Eur. J. Biochem. 110: 593.PubMedCrossRefGoogle Scholar
  126. Wahba, A. J., Miller, M. J., Niveleau, A., Landers, T. A., Carmichael, G., Weber, K., Hawley, D. A., and Slobin, L. J., 1974, Subunit I of Qß replicase and 30S ribosomal protein Si of E. coli, J. Biol. Chem. 249: 3314.PubMedGoogle Scholar
  127. Watanabe, M., Watanabe, H., and August, J. T., 1968, Replication of RNA bacteriophage R23, J. Mol. Biol. 33: 1.PubMedCrossRefGoogle Scholar
  128. Weber, H., 1976, The binding site for coat protein on bacteriophage Qß RNA, Biochim. Biophys. Acta 418: 175.PubMedGoogle Scholar
  129. Weber, K., and Konigsberg, W., 1975, Proteins of the RNA phages, in: RNA Phages ( N. D. Zinder, ed.), p. 51, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  130. Weber, H., Billeter, M. A., Kahane, S., Weissmann, C., Hindley, J., and Porter, A., 1972, Molecular basis for repressor activity of QJ3 replicase, Nature (Lond.) 237: 166.CrossRefGoogle Scholar
  131. Weiner, A. M., and Weber, K., 1971, Natural read-through at the UGA termination signal of Q(3 coat protein cistron, Nature New Biol. 234: 206.PubMedGoogle Scholar
  132. Winter, R. B., and Gold, L., 1983, Overproduction of bacteriophage Q(3 maturation protein leads to cell lysis, Cell 33: 877.PubMedCrossRefGoogle Scholar
  133. Wittmann-Liebold, B., and Wittmann, H. G., 1967, Coat proteins of strains of two RNA viruses: Comparison of their amino acid sequences, Mol. Gen. Genet. 100: 358.PubMedCrossRefGoogle Scholar
  134. Wulff, D. L., Mahoney, M., Shatzman, A., and Rosenberg, M., 1984, Mutational analysis of a regulatory region in bacteriophage that has overlapping signals for the initiation of transcription and translation, Proc. Natl. Acad. Sci. USA 81: 555.PubMedCrossRefGoogle Scholar
  135. Yates, J. L., and Nomura, M., 1981, Feedback regulation of ribosomal protein synthesis in E. coli: Localization of the mRNA target sites for repressor action of ribosomal protein L1, Cell 24: 243.PubMedCrossRefGoogle Scholar
  136. Yonesaki, T., and Aoyama, A., 1981, In vitro replication of bacteriophage GA RNA. Involvement of host factor(s) in GA RNA replication, J. Biochem. 89: 751.PubMedGoogle Scholar
  137. Yonesaki, T., and Haruna, I., 1981, In vitro replication of bacteriophage GA RNA. Subunit structure and analytic properties of GA replicase, J. Biochem. 89: 741.PubMedGoogle Scholar
  138. Yonesaki, T., Furuse, K., Haruna, I., and Watanabe, I., 1982, Relationships among four groups of RNA coliphages based on the template specificity of GA replicase, Virology 116: 379.PubMedCrossRefGoogle Scholar
  139. Zaug, A. J., and Cech, T. R., 1986, The intervening sequence RNA of Tetrahymena is an enzyme, Science 231: 470.PubMedCrossRefGoogle Scholar
  140. Zinder, N. D. (ed.), 1975, RNA Phages, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  141. Zipper, P., Kratky, O., Herrmann, R., and Hohn, T., 1971, An X-ray small angle study of the bacteriophage fr and R17, Eur. J. Biochem. 18: 1.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jan van Duin
    • 1
  1. 1.Department of BiochemistryUniversity of LeidenLeidenThe Netherlands

Personalised recommendations