Advertisement

Changes in RNA Polymerase

  • E. Peter Geiduschek
  • George A. Kassavetis
Part of the The Viruses book series (VIRS)

Abstract

The bacteriophages generate developmental time sequences of gene expression by a variety of mechanisms, primarily but not exclusively involving transcription. There are many ways to modulate transcription in prokaryotes; phages are known to use many of these and may use them all. The viral infections we discuss are terminal events for their bacterial host cells, comparable, in that sense, with noninfectious terminal differentiations such as heterocyst and spore formation. From a regulatory point of view, the principal difference is that the commitment to bacterial differentiation involves more or less complex interplays of metabolic signals that the initiating event of infection—virus attachment and the injection of the foreign DNA—in no way resembles. However, similar alterations of transcription machinery are called into action during bacterial differentiation and during phage infection.

Keywords

Late Promoter Bacteriophage SPOI Open Promoter Complex Nontranscribed Strand Middle Promoter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baralle, F. E., and Travers, A. A., 1976, Phage T4 infection restricts rRNA synthesis by E. coli RNA polymerase, Mol. Gen. Genet. 147: 291.PubMedCrossRefGoogle Scholar
  2. Barthelemy, I., Salas, M., and Mellado, R. P., 1986, In vivo transcription of bacteriophage 4)29 DNA: Transcription initiation sites, I. Virol. 60: 874.Google Scholar
  3. Bertani, L. E., and Six, E. W., 1988, the P2-like phages and their parasite, P4, in The Bacteriophages, vol. 2 (R. Calendar, ed.), pp. 73–143, Plenum Press, New York.Google Scholar
  4. Bogdanova, E. S., Zograff, Y. N., Bass, I. A., and Shemyakin, M. F., 1970, Free subunits of RNA polymerase in normal and phage-infected cells of E. coli, Mol. Biol. 4: 435 (in Russian).Google Scholar
  5. Bolund, C., 1973, Influence of gene 55 on the regulation of synthesis of some early enzymes in bacteriophage T4-infected E. coli, J. Virol. 12: 49.PubMedGoogle Scholar
  6. Briat, J.-F., and Chamberlin, M. J., 1984, Identification and characterization of a new transcriptional termination factor from Escherichia coli, Proc. Natl. Acad. Sci. USA 81: 7373.PubMedCrossRefGoogle Scholar
  7. Brody, E., Rabussay, D., and Hall, D. H., 1983, Regulation of transcription of prereplicative genes, in: Bacteriophage T4 ( C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget, eds.), p. 174, American Society for Microbiology, Washington.Google Scholar
  8. Broida, J., and Abelson, J., 1985, Sequence organization and control of transcription in the bacteriophage T4 tRNA region, J. Mol. Biol. 185: 545.PubMedCrossRefGoogle Scholar
  9. Brunel, F., Thi, V. H., Pilaete, M. F., and Davison, J., 1983, Transcription regulatory ele- ments in the late region of bacteriophage T5 DNA, Nucleic Acids Res. 11: 7649.PubMedCrossRefGoogle Scholar
  10. Buchstein, S. R., and Hinkle, D. C., 1982, Genetic analysis of two bacterial RNA polymerase mutants that inhibit the growth of bacteriophage T7, Mol. Gen. Genet. 188: 211.PubMedCrossRefGoogle Scholar
  11. Bujard, H., Deuschle, U., Kammerer, W., Gentz, R., Bannworth, W. and Stüber, D., 1985, in: Sequence Specificity in Transcription and Translation (R. Calendar and L. Gold, eds.), p. 21, A. R. Liss, New York.Google Scholar
  12. Caruso, M., Coppo, A., Manzi, A, and Pulitzer, J., 1979, Host-virus interactions in the control of T4 prereplicative transcription. I. tabC(rho) mutants, J. Mol. Biol. 135: 950.CrossRefGoogle Scholar
  13. Chace, K. V., and Hall, D. H., 1975, Characterization of new regulatory mutants of bacterio-phage T4. II. New class of mutants, J. Virol. 15: 929.PubMedGoogle Scholar
  14. Chelm, B. K., Duffy, J. J., and Geiduschek, E. P., 1982, Interaction of B. subtilis RNA polymerase core with two specificity-determining subunits, J. Biol. Chem. 257: 6501.PubMedGoogle Scholar
  15. Choy, H. A., Romeo, J. M., and Geiduschek, E. P., 1986, Activity of a phage-modified RNA polymerase at hybrid promoters: Effects of substituting thymine for hydroxymethyl uracil in a phage SPO1 middle promoter, J. Mol. Biol. 191: 59.PubMedCrossRefGoogle Scholar
  16. Christensen, A. C., and Young, E. T., 1982, T4 late transcripts are initiated near a conserved DNA sequence, Nature (Loud.) 299: 369.CrossRefGoogle Scholar
  17. Christensen, A. C., and Young, E. T., 1983, Characterization of T4 transcripts, in: Bacteriophage T4 ( C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget, eds.), p. 184, American Society for Microbiology, Washington.Google Scholar
  18. Coppo, A., Manzi, A., Pulitzer, J. F., and Takahashi, H., 1975a, Host mutant (tabD)-induced inhibition of bacteriophage T4 late transcription. I. Isolation and phenotypic characterization of the mutants, J. Mol. Biol. 96: 579.PubMedCrossRefGoogle Scholar
  19. Coppo, A., Manzi, A., and Pulitzer, J. F., 1975b, Host mutant (tabD)-induced inhibition of bacteriophage T4 late transcription. II. Genetic characterization of mutants, J. Mol. Biol. 96: 601.PubMedCrossRefGoogle Scholar
  20. Costanzo, M., 1984, Ph.D. thesis, Harvard University.Google Scholar
  21. Costanzo, M., Hannett, N., Brzustowicz, L., and Pero, J., 1983, Bacteriophage SPO1 gene 27: Location and nucleotide sequence, J. Virol. 48: 555.PubMedGoogle Scholar
  22. Costanzo, M., Brzustowicz, L., Hannett, N., and Pero, J., 1984, Bacteriophage SPO1 genes 33 and 34, J. Mol. Biol. 180: 533.PubMedCrossRefGoogle Scholar
  23. De Franciscis, V., and Brody, E., 1982, In vitro system for middle T4 RNA. I. Studies with Escherichia coli RNA polymerase, J. Biol. Chem. 257: 4087.Google Scholar
  24. De Franciscis, V., Favre, R., Uzan, M., Leautey, J., and Brody, E., 1982, In vitro system for T4 RNA. II. Studies with T4-modified RNA polymerase, J. Biol. Chem. 257: 4097.Google Scholar
  25. De Wyngaert, M. A., and Hinkle, D. C., 1979, Bacterial mutants affecting phage T7 DNA replication produce RNA polymerase resistant to inhibition by the T7 gene 2 protein, J. Biol. Chem. 254: 1 1247.Google Scholar
  26. Dickerson, R. E., 1983, Base sequence and helix structure variation in B and A DNA, J. Mol. Biol. 166: 419.PubMedCrossRefGoogle Scholar
  27. Doi, R. H., and Wang, L.-F., 1986, Multiple procaryotic ribonucleic acid polymerase sigma factors, Microbiol. Rev. 50: 227.PubMedGoogle Scholar
  28. Duffy, J. H., and Geiduschek, E. P., 1976, The virus-specified subunits of a modified B. subtilis RNA polymerase are determinants of DNA binding and RNA chain initiation, Cell 8: 595.PubMedCrossRefGoogle Scholar
  29. Duffy, J. H., and Geiduschek, E. P., 1977, Purification of a positive regulatory subunit from phage SPO1-modified RNA polymerase, Nature 270: 28.PubMedCrossRefGoogle Scholar
  30. Dunn, J. J., and Studier, F. W., 1981, Nucleotide sequence from the genetic left end of bacteriophage T7 DNA to the beginning of gene 4, J. Mol. Biol. 148: 303.PubMedCrossRefGoogle Scholar
  31. Fox, T. D., and Pero, J., 1974, New phage-SP01-induced polypeptides associated with Bacillus subtilis RNA polymerase, Proc. Natl. Acad. Sci. USA 71: 2761.PubMedCrossRefGoogle Scholar
  32. Fox, T. D., Losick, R., and Pero, J., 1976, Regulatory gene 28 of bacteriophage SPO1 codes for a phage-induced subunit of RNA polymerase, /. Mol. Biol. 101: 427.CrossRefGoogle Scholar
  33. Fujita, D. J., Ohlsson-Wilhelm, B. M., and Geiduschek, E. P., 1971, Transcription during bacteriophage SP01 development: Mutations affecting the program of viral transcription, /. Mol. Biol. 57: 301.CrossRefGoogle Scholar
  34. Geiduschek, E. P., and Ito, J., 1982, Regulatory mechanisms in the development of lytic bacteriophages in Bacillus subtilis, in: The Molecular Biology of Bacilli I OD. Dubnau, ed.), Chap. 7, Academic Press, New York.Google Scholar
  35. Gentz, R., and Bujard, H., 1985, Promoters recognized by Escherichia coli RNA polymerase selected by function: Highly efficient promoters from bacteriophage T5, J. Bacteriol. 164: 70.PubMedGoogle Scholar
  36. Goff, C. G., 1979, Bacteriophage T4 alt gene maps between genes 30 and 54, I. Virol. 29: 1232.Google Scholar
  37. Goff, C. G., and Setzer, J., 1980, ADP ribosylation of Escherichia coli RNA polymerase is nonessential for bacteriophage T4 development, I. Virol. 33: 547.Google Scholar
  38. Goldfarb, A., 1981, Changes in the promoter range of RNA polymerase resulting from bacteriophage T4-induced modification of core enzyme, Proc. Natl. Acad. Sci. USA 78: 3454.PubMedCrossRefGoogle Scholar
  39. Goldfarb, A., and Malik, S., 1984, Changed promoter specificity and antitermination properties displayed in vitro by bacteriophage T4-modified RNA polymerase, J. Mol. Biol. 177: 87.PubMedCrossRefGoogle Scholar
  40. Goldfarb, A., and Palm, P, 1981, Control of promoter utilization by bacteriophage T4-induced modification of RNA polymerase alpha-subunit, Nucleic Acids Res. 9: 4863.PubMedCrossRefGoogle Scholar
  41. Gram, H., and Rüger, W., 1985, Genes 55, agt, 47 and 46 of bacteriophage T4: The genomic organization as deduced by sequence analysis, EMBO I. 4: 257.Google Scholar
  42. Gribskov, M., and Burgess, R. R., 1986, Sigma factors from E. coli, B. subtilis, phage SP01, and phage T4 are homologous proteins, Nucleic Acids Res. 14: 6745.PubMedCrossRefGoogle Scholar
  43. Guarente, L., Nye, J. S., Hochschild, A., and Ptashne, M., 1982, A mutant X repressor with a specific defect in its positive control function, Proc. Natl. Acad. Sci. USA 79: 2236.PubMedCrossRefGoogle Scholar
  44. Guild, N., 1986, Ph.D. thesis, University of Colorado.Google Scholar
  45. Gussin, G. N., 1984a, Kinetic analysis of mutations affecting the cII activation site at the PRE promoter of bacteriophage lambda, Proc. Natl. Acad. Sci. USA 81: 6432.PubMedCrossRefGoogle Scholar
  46. Gussin, G. N., 1984b, Role of cII protein in stimulating transcription initiation at the lambda PRE promoter. Enhanced formation and stabilization of open complexes, J. Mol. Biol. 172: 489.PubMedCrossRefGoogle Scholar
  47. Hahn, S., Kruse, U., and Rüger, W., 1986, The region of phage T4 genes 34, 33 and 59: Primary structures and organization on the genome, Nucleic Acids Res. 14: 9311.PubMedCrossRefGoogle Scholar
  48. Hall, D. H., and Snyder, R. D., 1981, Suppressors of mutations in the rII gene of bacterio-phage T4 affect promoter utilization, Genetics 97: 1.PubMedGoogle Scholar
  49. Hawley, D. K., and McClure, W. R., 1983, Compilation and analysis of Escherichia coli promoter DNA sequences, Nucleic Acids Res., 11: 2237.PubMedCrossRefGoogle Scholar
  50. Hesselbach, B. A., and Nakada, D., 1975, Inactive complex formation between E. coli RNA polymerase and an inhibitor protein purified from T7 phage infected cells, Nature (Lond.) 258: 354.CrossRefGoogle Scholar
  51. Hesselbach, B. A., and Nakada, D., 1977a, Host shutoff function of bacteriophage T7: Involvement of T7 gene 2 and gene 0.7 in the inactivation of Escherichia coli RNA polymerase, J. Virol. 24:736.Google Scholar
  52. Hesselbach, B. A., and Nakada, D., 1977b, I protein: Bacteriophage T7-coded inhibitor of Escherichia coli RNA polymerase, J. Virol. 24: 746.PubMedGoogle Scholar
  53. Ho., Y.-S., and Rosenberg, M., 1985, Characterization of a third, cII-dependent, coordinately activated promoter on phage lambda involved in lysogenic development. J. Biol. Chem. 260: 11838.Google Scholar
  54. Ho, Y.-S., Lewis, M., and Rosenberg, M., 1982, Purification and properties of a transcriptional activator: The cII protein of phage X, J. Biol. Chem. 257: 9128.PubMedGoogle Scholar
  55. Ho, Y.-S., Wulff, D. L., and Rosenberg, M., 1983, Bacteriophage lambda protein cll binds promoters on the opposite fact of the DNA helix from RNA polymerase. Nature (Lond.) 304: 703.CrossRefGoogle Scholar
  56. Ho, Y.-S., Wulff, D.L., and Rosenberg, M., 1986, Protein—nucleic acid interactions involved in transcription activation by the phage lambda regulatory protein cII, in: Regulation of Gene Expression (I. Booth and C. Higgins (eds.), Symposium of the Society for General Microbiology, p. 79, Cambridge University Press, London.Google Scholar
  57. Hochschild, A., Irwin, N., and Ptashne, M., 1983, Repressor structure and the mechanism of positive control, Cell 32: 319.PubMedCrossRefGoogle Scholar
  58. Homyk, T., Rodriguez, A., and Weil, J., 1976, Characterization of T4 mutants that partially suppress the inability of T4 rII to grow in lambda lysogens, Genetics 83: 477.PubMedGoogle Scholar
  59. Hoopes, B. C., and McClure, W. R., 1985, A cII-dependent promoter is located within the Qgene of bacteriophage lambda. Proc. Natl. Acad. Sci. USA 82: 3134.PubMedCrossRefGoogle Scholar
  60. Horvitz, H. R., 1973, Polypeptide bound to the host RNA polymerase is specified by T4 control gene 33, Nature New Biol. (Lond.) 244: 137.CrossRefGoogle Scholar
  61. Horvitz, R. H., 1974, Bacteriophage T4 mutants deficient in alteration and modification of the E. coli RNA polymerase, J. Mol. Biol. 90: 739.PubMedCrossRefGoogle Scholar
  62. Hsu, T., Wei, R., Dawson, M., and Karam, J., 1987, Identification of two new bacteriophage T4 genes that may have roles in transcription and DNa replication, J. Virol. 61: 366.PubMedGoogle Scholar
  63. Hunt, T. F., and Magasanik, B., 1985, Transcription of ginA by purified Escherichia coli components: Core RNA polymerase and the products of glnF, ginG and ginL, Proc. Natl. Acad. Sci. USA 82: 8453.PubMedCrossRefGoogle Scholar
  64. Jacobs, K. A., and Geiduschek, E. P., 1981, Regulation of expression of cloned bacteriophage T4 late gene 23, J. Virol. 39: 46.PubMedGoogle Scholar
  65. Jacobs, K. A., Albright, L. M., Shibata, D. K., and Geiduschek, E. P., 1981, Genetic complementation by cloned bacteriophage T4 late genes, J. Virol. 39: 31.PubMedGoogle Scholar
  66. Kassavetis, G. A., and Geiduschek, E. P., 1984, Defining a bacteriophage T4 late promoter: Bacteriophage T4 gene 55 protein suffices for directing late promoter recognition, Proc. Natl. Acad. Sci. USA 81: 5101.PubMedCrossRefGoogle Scholar
  67. Kassavetis, G. A., Zentner, P. G., and Geiduschek, E. P., 1986, Transcription at bacteriophage T4 variant late promoters, J. Biol. Chem. 261: 14256.PubMedGoogle Scholar
  68. Kassavetis, G. A., Williams, K. P., and Geiduschek, E. P., 1987, Interactions of bacteriophage T4 gene 55 product with Escherichia coli RneA polymerase, J. Biol. Chem. 262: 1 2365.Google Scholar
  69. Khesin, R. B., Bogdanova, E. S., Goldfarb, A. D., and Zograff, Y. N., 1972, Competition for the DNA template between RNA polymerase molecules from normal and phage-in-fected E. coli, Mol. Gen. Genet. 119: 299.Google Scholar
  70. Khesin, R. B., Nikiforov, V. G., Zograff, Y. N., Danilevskaya, O. N., Kalayaeva, E. S., Lipkin, V. M., Modyanov, N. N., Dmitriev, A. D., Velkov, V. V., and Gintsburg, A. L., 1976, Influence of mutations and phage infection on E. coli RNA polymerase, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), p. 629, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  71. Koo, H.-S., Wu, H.-M., and Crothers, D. M., 1986, DNA bending at adenine thymine tracts, Nature 320: 501.PubMedCrossRefGoogle Scholar
  72. Ksenzenko, V. N., Kamynina, T. P., Pustoshilova, N. M., Kryukov, V. M., and Bayev, A. S., 1982, Cloning of bacteriophage T5 promoters Mol. Gen. Genet. 185: 520.PubMedCrossRefGoogle Scholar
  73. LeClerc, J. E., and Richardson, C. C., 1979, Bacteriophage T7 DNA replication in vitro. XVI. Gene 2 protein of bacteriophage T7: Purification and requirement for packaging T7 DNA in vitro, Proc. Natl. Acad. Sci. USA 76: 4852.PubMedCrossRefGoogle Scholar
  74. Lee, G., Hannett, N. M., Korman, A., and Pero, J., 1980, Transcription of cloned DNA from Bacillus subtilis phage SPO1, J. Mol. Biol. 139: 407.PubMedCrossRefGoogle Scholar
  75. Lee, G., and Pero, J., 1981, Conserved nucleotide sequences in temporally controlled bacteriophage promoters, J Mol. Biol. 152: 247.PubMedCrossRefGoogle Scholar
  76. Losick, R., and Pero, J., 1981, Cascades of sigma factors, Cell 25: 582.PubMedCrossRefGoogle Scholar
  77. Mahadik, S. P., Dharmgrongartama, B., and Srinivasan, P. R., 1972, An inhibitory protein of Escherichia coli RNA polymerase in bacteriophage T 3-infected cells, Proc. Nat. Acad. Sci. USA 69: 162.PubMedCrossRefGoogle Scholar
  78. Mahadik, S. P., Dharmgrongartama, B., and Srinivasan, P. R., 1974, Regulation of host RNA synthesis in bacteriophage T 3-infected cells. Properties of an inhibitory protein of E. coli ribonucleic acid polymerase, J. Biol. Chem. 249: 1787.Google Scholar
  79. Mailhammer, R., Yang, H.-L., Reiness, G., and Zubay, G., 1975, Effects of bacteriophage T4-induced modification of Escherichia coli RNA polymerase on gene expression in vitro, Proc. Natl. Acad. Sci. USA 72: 4928.PubMedCrossRefGoogle Scholar
  80. Malik, S., and Goldfarb, A., 1984, The effect of a bacteriophage T4-induced polypeptide on host RNA polymerase interaction with promoters, J. Biol. Chem. 259: 13292.PubMedGoogle Scholar
  81. Malik, S., Dimitrov, M., and Goldfarb, A., 1985, Initiation of transcription by bacteriophage T4-modified RNA polymerase independently of host sigma factor, J. Mol. Biol. 185: 83.PubMedCrossRefGoogle Scholar
  82. Mattson, T., Richardson, J., and Goodin, D., 1974, Mutant of bacteriophage T4D affecting expression of many early genes, Nature (Lond.) 250: 48.CrossRefGoogle Scholar
  83. Mattson, T., Van Houwe, G., and Epstein, R. H., 1978, Isolation and characterization of conditional lethal mutations in the mot gene of bacteriophage T4, J. Mol. Biol. 126: 551.PubMedCrossRefGoogle Scholar
  84. McClure, W. R., 1985, Mechanism and control of transcription initiation in prokaryotes, Annu. Rev. Biochem. 54: 171.PubMedCrossRefGoogle Scholar
  85. McCorquodale, D. J., Chen, C. W., Joseph, M. K., and Woychik, R., 1981, Modification of RNA polymerase from Escherichia coli by pre-early gene products of bacteriophage T5, J. Virol. 40: 958.PubMedGoogle Scholar
  86. McPheeters, D. S., Christensen, A., Young, E. T., Stormo G., and Gold, L., 1986, Translational regulation of expression of the bacteriophage T4 lysozyme gene, Nucleic Acids Res. 14: 5813.PubMedCrossRefGoogle Scholar
  87. Mellado, R. P., Barthelemy, I., and Salas, M., 1986, In vitro transcription of bacteriophage 4.29 DNA. Correlation between in vitro and in vivo promoters. Nucleic Acids Res. 14:4731–4741.Google Scholar
  88. Mellado, R. P., Carrascosa, J. L., and Salas, M., 1985, Control of the late transcription of B. subtilis phage 4)29, in: Sequence Specificity in Transcription and Translation (R. Calendar and L. Gold, eds.), p., 219, A. R. Liss, New York.Google Scholar
  89. Nossal, N. G., and Alberts, B. M., 1983, Mechanism of DNA replication catalyzed by purified T4 replication proteins, in: Bacteriophage T4 ( C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget, eds.), p. 71, American Society for Microbiology, Washington.Google Scholar
  90. Pero, J., Tjian, R., Nelson, J., and Losick, R., 1975, In vitro transcription of a late class of phage SPO 1 genes, Nature (Lond.) 257: 248.Google Scholar
  91. Ptashne, M., 1986, A Genetic Switch, Cell Press and Blackwell Scientific Publications, London.Google Scholar
  92. Pulitzer, J. F., Coppo, A., and Caruso, M., 1979, Host-virus interactions in the control of T4 prereplicative transcription. II. Interaction between tab(rho) mutants and T4 mot mutants, J. Mol. Biol. 135: 979.PubMedCrossRefGoogle Scholar
  93. Pulitzer, J. F., Colombo, M., and Ciaramella, M., 1985, New control elements of bacteriophage T4 pre-relicative transcription, J. Mol. Biol. 182: 249.PubMedCrossRefGoogle Scholar
  94. Rabussay, D., 1983, Regulation of gene expression, in: Bacteriophage T4 ( C. K. Mathews, E. M. Kutter, G. Mosig, and P. B. Berget, eds.), p. 167, American Society for Microbiology, Washington.Google Scholar
  95. Rabussay, D., Mailhammer, R., and Zillig, W., 1972, Regulation of transcription by T4 phage-induced chemical alteration and modification of transcriptase (EC 2.7.7.6), in: Metabolic Interconversion of Enzymes ( O. Wieland, E. Heimreich, and H. Holzer, eds.), p. 213, Springer-Verlag, New York.CrossRefGoogle Scholar
  96. Rahmsdorf, H. J., Pai, S. H., Ponta, H., Herrlich, P., Roskoski, R. Jr., Schweiger, M., and Studier, F. W., 1974, Protein kinase induction in Escherichia coli by bacteriophage T7, Proc. Natl. Acad. Sci. USA 71: 586.PubMedCrossRefGoogle Scholar
  97. Ratner, D., 1974a, Bacteriophage T4 transcriptional control gene 55 codes for a protein bound to Escherichia coli RNA polymerase, J. Mol. Biol. 89: 803.PubMedCrossRefGoogle Scholar
  98. Ratner, D., 1974b, The interactions of bacterial and phage proteins with immobilized E. coli RNA polymerase, J. Mol. Biol. 88: 373.Google Scholar
  99. Reitzer, L. J., and Magasanik, B., 1986, Transcription of ginA in E. coli is stimulated by activator bound to sites far from the promoter, Cell 45: 785.PubMedCrossRefGoogle Scholar
  100. Romeo, J. M., Greene, J. R., Richards, S. H., and Geiduschek, E. P., 1986, The phage SP01specific RNA polymerase, E. gp28, recognizes its cognate promoters in thymine-containing DNA, Virology 153: 46.PubMedCrossRefGoogle Scholar
  101. Rothman-Denes, L., Muthukrishnan, S., Haselkorn, R., and Studier, F. W., 1973, A T7 gene function required for shut-off of host and early T7 transcription, in: Virus Research ( C. F. Fox and W. S. Robinson, eds.), p. 227, Academic Press, New York.Google Scholar
  102. Schäfer, R., and Zillig, W, 1973, The effects of ionic strength on termination of transcription of DNAs from bacteriophages T4, T5 and T7 by DNA-dependent RNA polymerase from Escherichia coli and the nature of termination by factor rho, Eur. J. Biochem. 33: 215.PubMedCrossRefGoogle Scholar
  103. Schmitt, M. P., Beck, P. J., Kearney, C. A., Spence, J. L., DiGiovanni, D., Condreay, J. P., and Molineux, I. J., 1987, Evolution of a conditionally essential region, including the primary origin of DNA replication, of bacteriophage T3, J. Mol. Biol. 193: 479.PubMedCrossRefGoogle Scholar
  104. Schwartz, E., Scherer, G., Hobom, G., and Kössel, H., 1978, Nucleotide sequence of cro, cII and part of the O gene in phage X DNA, Nature 272: 410.CrossRefGoogle Scholar
  105. Shanblatt, S. H., and Nakada, D., 1982, Escherichia coli mutant which restricts T7 bacteriophage has an altered RNA polymerase, J. Virol. 42: 1123.Google Scholar
  106. Shih, M.-C., and Gussin, G. N., 1983, Differential effects of mutations on discrete steps in transcription initiation at the XPRE promoter, Cell 34: 941.PubMedCrossRefGoogle Scholar
  107. Shih, M. C., and Gussin, G. N., 1984a, Kinetic analysis of mutations affecting the cII activation site at the PRE promoter of bacteriophage lambda, Proc. Natl. Acad. Sci. USA 81: 6432.PubMedCrossRefGoogle Scholar
  108. Shih, M. C., and Gussin, G. N., 1984b, Role of cII protein in stimulating transcription initiation at the lambda PRE promoter. Enhanced formation and stabilization of open complexes, J. Mol. Biol. 172: 489.PubMedCrossRefGoogle Scholar
  109. Sköld, 0., 1970, Regulation of early RNA synthesis in bacteriophage T4-infected Escherichia coli cells, J. Mol. Biol. 53: 339.CrossRefGoogle Scholar
  110. Stephenson, F. H., 1985, A cII-responsive promoter within the Q gene of bacteriophage lambda, Gene 35: 313.PubMedCrossRefGoogle Scholar
  111. Stevens, A., 1970, An isotopic study of DNA-dependent RNA polymerase of E. coli following T4 infection, Biochem. Biophys. Res. Commun. 41: 367.Google Scholar
  112. Stevens, A., 1972, New small polypeptides associated with DNA-dependent RNA polymerase of Escherichia coli after infection with bacteriophage T4, Proc. Natl. Acad. Sci. USA 69: 603.PubMedCrossRefGoogle Scholar
  113. Stevens, A., 1974, Deoxyribonucleic acid dependent ribonucleic acid polymerases from two T4 phage-infected systems, Biochemistry 13: 493.PubMedCrossRefGoogle Scholar
  114. Stevens, A., 1976, A salt-promoted inhibitor of RNA polymerase isolated from T4-infected E. coli, in: RNA Polymerase ( R. Losick and M. Chamberlin, eds.), p. 617, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY.Google Scholar
  115. Stevens, A., 1977, Inhibition of DNA-enzyme binding by an RNA polymerase inhibitor from T4 phage-infected Escherichia coli, Biochim. Biophys. Acta 475: 193.PubMedGoogle Scholar
  116. Stevens, A., and Rhoton, J. C., 1975, Characterization of an inhibitor causing potassium chloride sensitivity of an RNA polymerase from T4 phage-infected Escherichia coli, Biochemistry 14: 5074.PubMedCrossRefGoogle Scholar
  117. Stragier, P., Bouvier, J., Bonamy, C., and Szulmajster, J., 1984, A developmental gene product of Bacillus subtilis homologous to the sigma factor of Escherichia coli, Nature (Lond.) 312: 376.CrossRefGoogle Scholar
  118. Szabo, C., and Moyer, R. W., 1975, Purification and properties of a bacteriophage T5-modified form of Escherichia coli RNA polymerase, J. Virol. 15: 1042.PubMedGoogle Scholar
  119. Szabo, C., Dharmgrongartama, B., and Moyer, R. W., 1975, The regulation of transcription in bacteriophage T5-infected Escherichia coli, Biochemistry 14: 989.PubMedCrossRefGoogle Scholar
  120. Talkington, C., and Pero, J., 1978, Promoter recognition by phage SPO1-modified RNA polymerase, Proc. Natl. Acad. Sci. USA 75: 1185.PubMedCrossRefGoogle Scholar
  121. Talkington, C., and Pero, J., 1979, Distinctive nucleotide sequences of promoters recognized by RNA polymerase containing a phage-coded sigma-like protein, Proc. Natl. Acad. Sci. USA 76: 5465.PubMedCrossRefGoogle Scholar
  122. Tjian, R., and Pero, J., 1976, Bacteriophage SPO1 regulatory proteins directing late gene transcription in vitro, Nature 262: 753.CrossRefGoogle Scholar
  123. Trempy, J. E., Bonamy, C., Szulmajster, J., and Haldenwang, W. G., 1985, Bacillus subtilis Q factor CT29 is the product of the sporulation-essential gene spolIG, Proc. Natl. Acad. Sci. USA 82: 4189.Google Scholar
  124. Uzan, M., Leautey, J., Aubenton-Carafa, Y., and Brody, E., 1983, Identification and biosynthesis of the bacteriophage T4 mot regulatory protein, EMBO J., 2: 1207.PubMedGoogle Scholar
  125. Uzan, M., Aubenton-Carafa, Y., Favre, R., De Franciscis, V., and Brody, E., 1985, The T4 mot protein functions as part of a pre-replicative DNA-protein complex, /. Biol. Chem. 260: 633.Google Scholar
  126. Westpheling, J., Ranes, M., and Losick, R., 1985, RNA polymerase heterogeneity in Streptomyces coelicolor, Nature 313: 22.PubMedCrossRefGoogle Scholar
  127. Williams, K. P., Kassavetis, G. A., Esch, F. S., and Geiduschek, E. P., 1987, Identification of the gene encoding an RNA polymerase-binding protein of bacteriophage T4, J. Virol. 61: 597.PubMedGoogle Scholar
  128. Wu, R., Geiduschek, E. P., and Cascino, A., 1975, The role of replication proteins in the regulation of bacteriophage T4 transcription. II. Gene 45 and late transcription uncoupled from replication, J. Mol. Biol. 96: 539.PubMedCrossRefGoogle Scholar
  129. Wu, R., and Geiduschek, E. P., 1975, The role of replication proteins in the regulation of bacteriophage T4 transcription. I. Gene 45 and HMC containing DNA, J. Mol. Biol. 96: 513.PubMedCrossRefGoogle Scholar
  130. Wulff, D. L., and Mahoney, M. E., 1985, Cross-specificities of functionally identical DNA-binding proteins from different lambdoid bacteriophages, in: Sequence Specificity in Transcription and Translation ( R. Calendar and L. Gold, eds.), pp. 219–227, A. R. Liss, New York.Google Scholar
  131. Wulff, D. L., Mahoney, M., Shatzman, A., and Rosenberg, M., 1984, Mutational analysis of a regulatory region in bacteriophage X that has overlapping signals for the initiation of transcription and translation, Proc. Nat. Acad. Sci. USA 81: 555.PubMedCrossRefGoogle Scholar
  132. Wulff, D., and Rosenberg, M., 1983, The lysogenic program of bacteriophage lambda; establishment of repression, in: Bacteriophage Lambda II ( R. Hendrix, J. Roberts, F. Stahl, and R. Weissberg, eds.), p. 53, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  133. Zillig, W., Fujiki, H., Blum, W., Janekovíc, D., Schweiger, M., Rahmsdorf, H.-J., Ponta, H., and Hirsch-Kauffmann, M., 1975, In vivo and in vitro phosphorylation of DNA-dependent RNA polymerase of Escherichia coli by bacteriophage-T7-induced protein kinase, Proc. Natl. Acad. Sci. USA 72: 2506.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • E. Peter Geiduschek
    • 1
  • George A. Kassavetis
    • 1
  1. 1.Department of Biology and Center for Molecular GeneticsUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations