Control Mechanisms in dsDNA Bacteriophage Assembly

  • Sherwood Casjens
  • Roger Hendrix
Part of the The Viruses book series (VIRS)


The introduction of the use of T-even bacteriophages as genetic and biochemical experimental systems by Max Delbrück in the late 1930s has led to the intense study of many aspects of bacteriophage biology. Of these, two related endeavors, the study of the structure and the assembly of the virions, have been very important models in the development of our current understanding of macromolecular assembly processes. Twenty years ago, Edgar, Kellenberger, Epstein, and collaborators nucleated these studies by showing that phage assembly follows defined pathways that can accumulate assembly intermediates when blocked and that the assembly-naive components of phage T4 thus accumulated could join properly in vitro (Epstein et al., 1963; Edgar and Wood, 1966; Wood et al., 1968). Since that time, the structure and assembly of many bacteriophages and other viruses have been studied. The possibility of completely defining the genetic systems, and therefore the proteins involved, has made phage assembly a particularly popular and tractable area in which to study macromolecular assembly. We will not consider it the mission of this chapter to collect the details of this myriad of studies. The reader should consult other chapters in this volume or other reviews for such details (e.g., Casjens and King, 1975; Murialdo and Becker, 1978a; Eiserling, 1979; Wood and King, 1979; King, 1980; DuBow, 1981; Mathews et al., 1983; Hendrix et al., 1983; Casjens, 1985c; Carrascosa, 1986). Instead we will focus on general questions currently under study and attempts to answer them in the various dsDNA phage systems. We will not discuss the problem of DNA packaging in detail and will not cover the lipid-containing dsDNA phages.


Coat Protein Scaffolding Protein Tail Fiber Head Assembly Tape Measure Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abremski, K., and Black, L., 1979, The function of bacteriophage T4 internal protein I in a restrictive strain of Escherichia coli, Virology 97: 439.PubMedCrossRefGoogle Scholar
  2. Adams, M., Brown, H., and Casjens, S., 1985, Bacteriophage P22 tail gene expression, J. Virol. 53: 180.PubMedGoogle Scholar
  3. Adrian, M., Dubochet, J., Lepault, J., and McDowall, A., 1984, Cryoelectron microscopy of viruses, Nature 308: 32.PubMedCrossRefGoogle Scholar
  4. Aebi, U., Bijlinga, R., Van der Broek, J., Van der Broek, R., Eiserling, F., Kellenberger, C., Kellenberger, E., Mesyanzihnov, V., Muller, L., Showe, M., Smith, R., and Steven, A., 1974, The transformation of tau-particles into T4 heads. II. Transformations of the surface lattice and related observations on form determination, J. Supramol. Str. 2: 253.CrossRefGoogle Scholar
  5. Aebi, U., Bijlinga, R., ten Heggler, B., Kistler, J., Steven, A., and Smith, P., 1976, Comparison of the structural and chemical composition of giant T-even phage heads, J. Supremo]. Str. 5: 475.CrossRefGoogle Scholar
  6. Aebi, U., Van Driel, R., Bijlenga, R., ten Heggler, B., Van der Broek, R., Steven, A., and Smith, P., 1977, Capsid fine structure of T-even bacteriophages. Binding and localization of two dispensible capsid proteins into P23 surface lattice, J. Mol. Biol. 110: 687.PubMedCrossRefGoogle Scholar
  7. Aksiyote-Benbasat, J., and Bloomfield, V., 1975, Joining of bacteriophage T4D heads and tails: A kinetic study based on inelastic light scattering, J. Mol. Biol. 95: 335.PubMedCrossRefGoogle Scholar
  8. Aksiyote-Benbasat, J., and Bloomfield, V., 1981, Kinetics of head-tail joining in bacteriophage T4D studied by quasi-elastic light scattering: Effects of temperature, pH, and ionic strength, Biochemistry 20: 5018.PubMedCrossRefGoogle Scholar
  9. Aksiyote-Benbasat, J., and Bloomfield, V., 1982, Hydrodynamics, size, and shape of bacteriophage T4D tails and baseplates, Biopolymers 21: 797.CrossRefGoogle Scholar
  10. Ames, B., and Dubin, D., 1960, The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid, J. Biol. Chem. 235: 769.PubMedGoogle Scholar
  11. Amos, L., and Klug, A., 1975, Three dimensional image reconstructions of the contractile tail of the T4 bacteriophage, J. Mol. Biol. 99: 51.PubMedCrossRefGoogle Scholar
  12. Anderson, D., Hickman, D., and Reilly, B., 1966, Structure of Bacillus subtilisbacterio- phage 4)29 and the length of the 4)29 deoxyribonucleic acid, J. Bacteriol.91: 2081.PubMedGoogle Scholar
  13. Arisaka, F., Tscopp, J., Van Driel, R., and Engel, J., 1979, Reassembly of the bacteriophage T4 tail from the core baseplate and the monomeric sheath protein P18: A co-operative process, J. Mol. Biol. 132: 369.PubMedCrossRefGoogle Scholar
  14. Arisaka, F., Engel, J., and Klump, H., 1981, Contraction and dissociation of the bacteriophage tail sheath induced by heat and urea, in: Bacteriophage Assembly( M. DuBow, ed.), pp. 365–379, Alan R. Liss, New York.Google Scholar
  15. Arscott, P. G., and Goldberg, E. B., 1976, Cooperative action of the T4 tail fibers and baseplate in triggering conformational changes and in determining host range, Virology 69: 15.PubMedCrossRefGoogle Scholar
  16. Bachrach, U., and Benchetrit, L., 1974, Studies on phage internal proteins. III. Specific binding of T4 internal proteins to T4 DNA, Virology 59: 443.PubMedCrossRefGoogle Scholar
  17. Bachrach, U., Fischer, R., and Klein, I., 1975, Occurrence of polyamines in coliphages T5, ()Al 74 and in phage-infected bacteria, J. Gen. Virol. 26: 287.PubMedCrossRefGoogle Scholar
  18. Backhaus, H., 1985, DNA packaging initiation of Salmonellabacteriophage P22: Determination of cut sites within the DNA sequence coding for gene 3, J. Virol. 55: 458.PubMedGoogle Scholar
  19. Bayer, M. E., Thurow, H., and Bayer, M. H., 1979, Penetration of the polysaccharide capsule of Escherichia coli(Bi 161/42) by bacteriophage K29, Virology 94: 95.PubMedCrossRefGoogle Scholar
  20. Bazinet, C., and King, J., 1985, The DNA translocating vertex of dsDNA bacteriophage, Annu. Rev. Microbiol. 39: 109.PubMedCrossRefGoogle Scholar
  21. Bazinet, C., Benbasat, J., King, J., Carazo, J., and Carrascosa, J., 1988, Purification and organization of the gene 1 protoprotein required for phage P22 DNA packaging, Biochemistry (in press).Google Scholar
  22. Beckendorf, S., 1973, Structure of the distal half of the T4 tail fiber, J. Mol. Biol. 73: 37.PubMedCrossRefGoogle Scholar
  23. Beckendorf, S., Kim, J., and Lielausis, I., 1973, Structure of bacteriophage T4 genes 37 and 38. J. Mol. Biol. 73: 17.PubMedCrossRefGoogle Scholar
  24. Becker, A., and Gold, M., 1978, Enzymatic breakage of the cohesive end site of phage X DNA: terminase (ter) reaction, Proc. Natl. Acad. Sci. USA 75: 4199.PubMedCrossRefGoogle Scholar
  25. Berget, P., 1985, Pathways in viral morphogenesis, in: Virus Structure and Assembly( S. Casjens, ed.), pp. 149–168, Jones and Bartlett, Boston.Google Scholar
  26. Berget, P., and King, J., 1978, The isolation and characterization of precursors in T4 baseplate assembly. The complex of gene 10and gene ilproducts, J. Mol. Biol. 124: 469.PubMedCrossRefGoogle Scholar
  27. Berget, P., and King, J., 1983, in: Bacteriophage T4(C. Mathews, E. Kutter, G. Mosig, and P. Berget, eds.), pp. 246–258, ASM Publications, Washington.Google Scholar
  28. Berget, P., and Poteete, A., 1980, Structure and function of the bacteriophage P22 tail protein, J. Virol. 34: 234.PubMedGoogle Scholar
  29. Bessler, W., Freund-Molbert, E., Knufermann, H., Rudolph, C., Thurow, H., and Stirm, S., 1973, A bacteriophage-induced depolymerase active on KlebsienaKl l capsular polysaccharide, Virology, 56: 134.PubMedCrossRefGoogle Scholar
  30. Bishop, R., and Wood, W., 1976, Genetic analysis of T4 tail fiber assembly. I. A gene 37 mutation that allows bypass of gene 38function, Virology 72: 244.PubMedCrossRefGoogle Scholar
  31. Black, L., 1974, Bacteriophage T4 internal protein mutants: Isolation and properties, Virology 60: 166.PubMedCrossRefGoogle Scholar
  32. Black, L., and Ahmed-Zadeh, C., 1971, Internal proteins of bacteriophage T4: Their characterization and relation to head structure and assembly, J. Mol. Biol. 57: 71.PubMedCrossRefGoogle Scholar
  33. Black, L., and Showe, M., 1983, Morphogenesis of the T4 head, in: Bacteriophage T4( C. Mathews, E. Kutter, G. Mosig, and P. Berget, eds.), pp. 219–245, ASM Publications, Washington.Google Scholar
  34. Black, L., Newcomb, W., Boring, J., and Brown, J., 1985, Ion etching of bacteriophage T4: Support for a spiral-fold model of packaged DNA, Proc. Natl. Acad. Sci. USA 82: 7960.PubMedCrossRefGoogle Scholar
  35. Bloomfield, V., 1983, Physical studies of morphogenetic reactions, in: Bacteriophage T4( C. Mathews, E. Kutter, G. Mosig, and P. Berget, eds.), pp. 270–276, ASM Publications, Washington.Google Scholar
  36. Bloomfield, V., and Prager, S., 1979, Diffusion-controlled reactions on spherical surfaces: Application to bacteriophage tail fiber attachment, Biophys. J. 27: 227.CrossRefGoogle Scholar
  37. Botstein, D., Waddell, C., and King, J., 1973, Mechanism of head assembly and DNA encapsulation in Salmonellaphage P22. I. Genes, proteins, structures, and DNA maturation, J. Mol. Biol. 80: 669.PubMedCrossRefGoogle Scholar
  38. Bowden, D., and Calendar, R., 1979, Maturation of bacteriophage P2 DNA in vitro: A complex, site-specific system of DNA cleavage, J. Mol. Biol. 129: 1.PubMedCrossRefGoogle Scholar
  39. Bradley, D., 1967, Ultrastructure of bacteriophages and bacteriocins, Bacteriol. Rev. 3: 230.Google Scholar
  40. Branton, D., and Klug, A., 1975, Capsid geometry of bacteriophage T2: Freeze-etching study, 1. Mol. Biol. 92: 559.CrossRefGoogle Scholar
  41. Bryant, J., and King, J., 1985, Injection proteins as targets of acridine-sensitized photoinactivation of bacteriophage P22, J. Mol. Biol. 180: 837.CrossRefGoogle Scholar
  42. Buchwald, M., and Siminovitch, L., 1969, Production of serum blocking material by mutants of the left arm of the X chromosome, Virology 38: 1.PubMedCrossRefGoogle Scholar
  43. Buchwald, M., Steed-Glaister, P., and Siminovitch, L., 1970, The morphogenesis of bacteriophage lambda. I. Purification and characterization of heads and tails, Virology 42: 375.PubMedCrossRefGoogle Scholar
  44. Bukhari, A., and Ambrosio, L., 1978, The invertible segment of bacteriophage Mu DNA determines the adsorption properties of Mu particle, Nature 271: 575.PubMedCrossRefGoogle Scholar
  45. Burnett, R., 1985, The structure of the adenovirus capsid. II. The packing symmetry of hexon and its implications for viral architecture, J. Mol. Biol. 185: 125.PubMedCrossRefGoogle Scholar
  46. Burnett, R., Grutter, M., and White, J., 1985, The structure of the adenovirus capsid. I. An envelope model of hexon at 6 A resolution, J. Mol. Biol. 185: 105.PubMedCrossRefGoogle Scholar
  47. Butler, P., and Klug, A., 1971, Assembly of the particle of tobacco mosaic virus from RNA and disks of protein, Nature New Biol. 229: 48.CrossRefGoogle Scholar
  48. Caldentey, J., and Kellenberger, E., 1986, Assembly and disassembly of bacteriophage T4 polyheads, J. Mol. Biol. 188: 39.PubMedCrossRefGoogle Scholar
  49. Campbell, A., and Botstein, D., 1983, Evolution of the lambdoid phages, in: Lambda II( R. Hendrix, J. Roberts, F. Stahl, and R. Weisberg, eds.), pp. 365–380, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  50. Capco, G., and Mathews, C., 1973, Bacteriophage-coded thymidine synthetase: Evidence that the T4 enzyme is a capsid protein, Arch. Biochem. Biophys. 158: 736.PubMedCrossRefGoogle Scholar
  51. Carazo, J., Santisteban, A., and Carrascosa, J., 1985, Three-dimensional reconstruction of the bacteriophage X29 neck particles at 2.2 nm resolution. Mol. Biol. 183: 79.CrossRefGoogle Scholar
  52. Carazo, J., Fujisawa, H., Nakasu, S., and Carrascosa, J., 1986, Bacteriophage T3 gene 8 product oligomer structure, J. Ultrastr. Res. 94: 105.CrossRefGoogle Scholar
  53. Carrascosa, J., 1986, Bacteriophage morphogenesis, in: Electron Microscopy of Proteins, Vol. 5: Viral Structure( J. Harris and R. Home, eds. 1, pp. 37–70, Academic Press, London.Google Scholar
  54. Carrascosa, J., Mendez, E., Corral, J., Rubio, V., Ramirez, G., Vinuela, E., and Salas, M., 1981, Structural organization of Bacillus subtilisphage X29. A model, Virology 111: 401.PubMedCrossRefGoogle Scholar
  55. Carrascosa, J., Vinuela, E., Garcia, N., and Santisteban, A., 1982, Structure of the head-tail connector of X29, J. Mol. Biol. 154: 311.PubMedCrossRefGoogle Scholar
  56. Casjens, S., 1974, Bacteriophage lambda F11 protein: Role in head assembly. Mol. Biol. 90: 1.CrossRefGoogle Scholar
  57. Casjens, S., 1979, Molecular organization of the bacteriophage P22 coat protein shell, J. Mol. Biol. 131: 1.PubMedCrossRefGoogle Scholar
  58. Casjens, S., 1985a, An introduction to virus structure and assembly, in: Virus Structure and Assembly ( S. Casjens, ed.), pp. 1–28, Jones and Bartlett, Boston.Google Scholar
  59. Casjens, S., 1985b, Nucleic acid packaging by viruses, in: Virus Structure and Assembly( S. Casjens, ed.), pp. 75–147, Jones and Bartlett, Boston.Google Scholar
  60. Casjens, S. (ed.), 1985c, Virus Structure and Assembly, Jones and Bartlett, Boston.Google Scholar
  61. Casjens, S., and Adams, M., 1985, Posttranscriptional modulation of bacteriophage P22 scaffolding protein gene expression, J. Virol. 53: 185.PubMedGoogle Scholar
  62. Casjens, S., and Hendrix, R., 1974a, Locations and amounts of the major structural proteins in bacteriophage lambda, J. Mol. Biol. 88: 535.CrossRefGoogle Scholar
  63. Casjens, S., and Hendrix, R., 1974b, Comments on the arrangement of the morphogenetic genes of bacteriophage lambda, J. Mol. Biol. 90: 20.CrossRefGoogle Scholar
  64. Casjens, S., and King, J., 1974, P22 morphogenesis: Catalytic scaffolding protein in capsid assembly. Supramol. Str. 2: 202.CrossRefGoogle Scholar
  65. Casjens, S., and King, J., 1975, Virus assembly, Annu. Rev. Biochem. 44: 55.Google Scholar
  66. Casjens, S., Hohn, T., and Kaiser, A. D., 1972, Head assembly steps controlled by genes F and Win bacteriophage lambda, I. Mol. Biol. 64: 551.CrossRefGoogle Scholar
  67. Casjens, S., Adams, M., Hall, C., and King, J., 1985, Assembly-controlled autotogenous modulation of bacteriophage P22 scaffolding protein gene expression, J. Virol. 53: 174.PubMedGoogle Scholar
  68. Caspar, D., 1965, Design principles in virus construction, in: Viral and Rickettsial Diseases of Man, 4th Ed. ( P. Horsfall and I. Tamm, eds.), pp. 51–93, Lippincott, Philadelphia.Google Scholar
  69. Caspar, D., 1980, Movement and self-control in protein assemblies. Quasi-equivalence revisited, Biophys. J. 32: 103.PubMedCrossRefGoogle Scholar
  70. Caspar, D., and Klug, A., 1962, Physical principles in the construction of regular viruses, Cold Spr. Harbor Symp. Quant. Biol. 27: 1.CrossRefGoogle Scholar
  71. Castillo, C., Hsiao, C., Coon, P., and Black, L., 1977, Identification and properties of bacteriophage T4 capsid-forming gene products, J. Mol. Biol. 110: 585.PubMedCrossRefGoogle Scholar
  72. Chandrasekhar, G. N., Tilly, K., Woolford, C., Hendrix, R., and Georgopoulos, C., 1986, Purification and properties of the groES morphogenetic protein of Escherichia coli, J. Biol. Chem. 261: 12414.PubMedGoogle Scholar
  73. Christie, G., and Calendar, R., 1985, Bacteriophage P2 late promoters. II. Comparison of four late promoter sequences, J. Mol. Biol. 181: 373.PubMedCrossRefGoogle Scholar
  74. Christensen, A., and Young, E., 1983, Characterization of T4 transcripts, in: Bacteriophage T4( C. Mathews, E. Kutter, G. Mosig, and P. Berget, eds.), pp. 184–188, ASM Publications, Washington.Google Scholar
  75. Chu, F., Maley, G., Maley, F., and Belfort, M., 1984, Intervening sequence in the thymidylate synthetase gene of bacteriophage T4, Proc. Natl. Acad. Sci. USA 81: 3049.PubMedCrossRefGoogle Scholar
  76. Clare, J., and Farabaugh, P., 1985, Nucleotide sequence of a yeast Ty element: Evidence for an unusual mechanism of gene expression, Proc. Natl. Acad. Sci. USA 82: 2829.PubMedCrossRefGoogle Scholar
  77. Coombs, D., and Eiserling, F., 1977, Studies on the structure, protein composition, and assembly of the neck of bacteriophage T4, J. Mol. Biol. 116: 375.PubMedCrossRefGoogle Scholar
  78. Craigen, W., Cook, R., Tate, W., and Caskey, T., 1985, Bacterial chain release factors: Conserved primary structure and possible frameshift regulation of release factor two, Proc. Natl. Acad. Sci. USA 82: 3616.PubMedCrossRefGoogle Scholar
  79. Crawford, J. T., and Goldberg, E. B., 1977, The effect of baseplate mutations on the requirement for tail fiber binding for irreversible adsorption of bacteriophage T4, J. Mol. Biol. 111: 305.PubMedCrossRefGoogle Scholar
  80. Crick, F., and Watson, J., 1956, Structure of small viruses, Nature 177: 473.PubMedCrossRefGoogle Scholar
  81. Crowelesmith, I., Schindler, M., and Osbom, M., 1978, Bacteriophage P22 is not a likely probe for zones of adhesion between the inner and outer membranes of Salmonella typhimurium, J. Bacteriol. 135: 259.Google Scholar
  82. Crowther, R. A., 1980, Mutants of bacteriophage T4 that produce infective fiberless particles, J. Mol. Biol. 137: 159.PubMedCrossRefGoogle Scholar
  83. Crowther, R. A., Lenk, E., Kikuchi, Y., and King, J., 1977, Molecular reorganization in the hexagon to star transition of the baseplate of bacteriophage T4, J. Mol. Biol. 116: 489.PubMedCrossRefGoogle Scholar
  84. Darcy-Tripier, F., Nermut, M., Brown, E., Nonnemacher, H., and Braunwald, J., 1986, Ultra-structural and biochemical evidence of the trimeric nature of frog virus 3 (FV3) six-coordinated capsomers, Virology 149: 44.PubMedCrossRefGoogle Scholar
  85. Dawes, J., and Goldberg, E., 1973, Functions of baseplate components in bacteriophage T4 infection. I. Dihydrofolate reductase and dihydropterylhexaglutamate, Virology 55: 380.PubMedCrossRefGoogle Scholar
  86. DeRosier, D., and Klug, A., 1968, Reconstruction of three-dimensional structures from electron micrographs, Nature 217: 130.CrossRefGoogle Scholar
  87. Doherty, D. H., 1982, Genetic studies on capsid-length determination in bacteriophage T4. II. Genetic evidence that specific protein-protein interactions are involved. Virol. 43: 655.Google Scholar
  88. Donelli, G., Guglielmi, F., and Paoletti, L., 1972, Structure and physiochemical properties of bacteriophage G. 1. Arrangement of protein subunits and contraction process of tail sheath, J. Mol. Biol. 71: 113.PubMedCrossRefGoogle Scholar
  89. Dove, W., 1971, Biological inferences, in: The Bacteriophage Lambda( A. Hershey, ed.), pp. 297–312, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  90. Drahos, D. J., and Hendrix, R. W., 1982, Effect of bacteriophage X infection on synthesis of groE protein and other Escherichia coliproteins, J. Bacteriol. 149: 1050.PubMedGoogle Scholar
  91. Drexler, K., Riede, I., and Henning, U., 1986, Morphogenesis of the long tail fibers of bacteriophage T2 involved proteolytic processing of the polypeptide (gene product 37) constituting the distal part of the fiber, J. Mol. Biol. 191: 267.PubMedCrossRefGoogle Scholar
  92. Driedonks, R., Krigsman, P., and Mellema, J., 1976, A study of the states of aggregation of alfalfa mosaic virus, Phil. Trans. R. Soc. Lond. B 276: 131.CrossRefGoogle Scholar
  93. Driedonks, R., Engel, A., ten Heggler, B., and Van Driel, R., 1981, Gene 20product of bacteriophage T4. Its purification and structure, J. Mol. Biol. 152: 641.PubMedCrossRefGoogle Scholar
  94. DuBow, M. (ed.), 1981, Bacteriophage Assembly: Progress in Clinical and Biological Research, Vol. 64, Alan R. Liss, New York.Google Scholar
  95. Duda, R., and Eiserling, F., 1982, Evidence for an internal component of the bacteriophage T4D tail core: A possible length-determining template, /. Virol. 43: 714.Google Scholar
  96. Duda, R., Wall, J., Hainfeld, J., Sweet, R., and Eiserling, F., 1985, Mass distribution of a probable tail-length-determining protein in bacteriophage T4, Proc. Natl. Acad. Sci. USA 82: 5550.PubMedCrossRefGoogle Scholar
  97. Duda, R., Gingery, M., and Eiserling, F., 1986, Potential length determiner and DNA injection protein is extruded from bacteriophage T4 tail tubes in vitro, Virology 151: 296.PubMedCrossRefGoogle Scholar
  98. Dunn, R., and Studier, W., 1983, Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements, J. Mol. Biol. 166: 477.PubMedCrossRefGoogle Scholar
  99. Earnshaw, W., 1979, Modelling of the small-angle X-ray diffraction arising from the surface lattices of phages lambda and P22, T. Mol. Biol. 131: 14.Google Scholar
  100. Earnshaw, W., and Casjens, S., 1980, DNA packaging by the double-stranded DNA bacteriophages, Cell 21: 319.PubMedCrossRefGoogle Scholar
  101. Earnshaw, W., and King, J., 1978, Structure of phage P22 protein aggregates formed in the absence of the scaffolding protein, J. Mol. Biol. 126: 721.PubMedCrossRefGoogle Scholar
  102. Earnshaw, W., Casjens, S., and Harrison, S., 1976, Assembly of the head of bacteriophage P22: X-ray diffraction from heads, proheads and related structures, J. Mol. Biol. 104: 387.PubMedCrossRefGoogle Scholar
  103. Eamshaw, W., King, J., Harrison, S., and Eiserling, F., 1978, The structural organization of DNA packaged within heads of T4 wild-type, isometric and giant bacteriophages, Cell 14: 559.CrossRefGoogle Scholar
  104. Earnshaw, W., Goldberg, E., and Crowther, R. A., 1979, The distal half of the tail fiber of bacteriophage T4, J. Mol. Biol. 132: 101.PubMedCrossRefGoogle Scholar
  105. Eamshaw, W., Hendrix, R., and King, J., 1979, Structural studies of bacteriophage X heads and proheads by small angle X-ray scattering, /. Mol. Biol. 134: 575.CrossRefGoogle Scholar
  106. Easterbrook, K. B., and Bleviss, M., 1969, In vitro polymerization of bacteriophage X tails, Virology 39: 331.PubMedCrossRefGoogle Scholar
  107. Echols, H., and Murialdo, H., 1978, Genetic map of bacteriophage lambda, Microbiol. Rev. 42: 577.PubMedGoogle Scholar
  108. Edgar, R., and Lielausis, I., 1968, Some steps in the assembly of bacteriophage T4, J. Mol. Biol. 32: 263.PubMedCrossRefGoogle Scholar
  109. Edgar, R., and Wood, W., 1966, Morphogenesis of bacteriophage T4 in extracts of mutant-infected cells, Proc. Natl. Acad. Sci. USA 55: 498.PubMedCrossRefGoogle Scholar
  110. Eiserling, F., 1967, The structure of Bacillus subtilisbacteriophage PBS1. Ultrastr. Res. 17: 342.CrossRefGoogle Scholar
  111. Eiserling, F., 1979, Bacteriophage structure, in: Comprehensive Virology, Vol. 13 ( H. Fraenkel-Conrat and R. Wagner, eds.), pp. 534–580, Plenum Press, New York.Google Scholar
  112. Eiserling, F., Corso, J., Feng, S., and Epstein, R., 1984, Intracellular morphogenesis of bacteriophage T4. II. Head morphogenesis, Virology 137: 95.PubMedCrossRefGoogle Scholar
  113. Elliot, J., and Arber, W., 1978, E. coliK-12 pelmutants, which block phage X DNA injection, coincide with ptsM, which determines a component of a sugar transport system, Mol. Gen. Genet. 161: 1.Google Scholar
  114. Elliot, T., Kassavetis, G., and Geiduschek, E. P., 1984, The complex pattern of transcription in the segment of the bacteriophage T4 genome containing three of the head protein genes, Virology 139: 260.CrossRefGoogle Scholar
  115. Engel, A., Van Driel, R., and Driedonks, R., 1982, A proposed structure of the prolate phage T4 prehead core. Ultrastruct. Res. 80: 12.CrossRefGoogle Scholar
  116. Epstein, R., Bolle, A., Steinberg, C., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgar, R., Sussman, M., Denhardt, C., and Lielausis, I., 1963, Physiological studies of conditional lethal mutants of bacteriophage T4D, Cold Spr. Harbor Symp. Quant. Biol. 28: 375.CrossRefGoogle Scholar
  117. Eriksson, U., Svenson, S., Lonngren, J., and Lindberg, A., 1979, Salmonellaphage glycanases: Substrate specificity of the phage P22 endo-rhamnosidase, J. Gen. Virol. 43: 503.Google Scholar
  118. Feiss, M., 1986, Terminase and the recognition, cutting and packaging of X chromosomes, Trends Genet. 2: 100.CrossRefGoogle Scholar
  119. Feiss, M., and Becker, A., 1983, DNA packaging and cutting, in: “Lambda II” (R. Hendrix, J. Roberts, F. Stahl, and R. Weisberg, eds.), pp. 305–330, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  120. Fiandt, M., Hradecna, Z., Lozeron, H., and Szybalski, W., 1971, Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNA’s of coliphages lambda and phi80, in: The Bacteriophage Lambda(A. Hershey, ed.), pp. 329354, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  121. Fish, S., Hartman, K., Fuller, M., King, J., and Thomas, G., 1980, Investigation of secondary structures and macromolecular interactions in bacteriophage P22 by laser raman spectroscopy, Biophys. J. 32: 234.PubMedCrossRefGoogle Scholar
  122. Fisher, R., 1930, The Genetical Theory of Natural Selection, Clarendon Press, Oxford, U.K.Google Scholar
  123. Flatgaard, J. E., 1969, PhD thesis, California Institute of Technology.Google Scholar
  124. Floor, E., 1970, Interaction of morphogenetic genes of bacteriophage T4, J. Mol. Biol. 47: 293.PubMedCrossRefGoogle Scholar
  125. Fox, T., and Weiss-Brummer, B., 1980, Leaky +1 and -1 frameshift mutations at the same site in a yeast mitochondrial gene, Nature 288: 60.PubMedCrossRefGoogle Scholar
  126. Frackman, S., Siegele, D., and Feiss, M., 1985, The terminase of bacteriophage X. Functional domains of cosBbinding and multimer assembly, J. Mol. Biol. 183: 225.PubMedCrossRefGoogle Scholar
  127. Friedman, D., and Gottesman, M., 1983, Lytic mode of lambda development, in: Lambda II( R. Hendrix, J. Roberts, F. Stahl, and R. Weisberg, eds.), pp. 21–51, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  128. Fuerst, C., and Bingham, H., 1978, Genetic and physiological characterization of the Jgene of bacteriophage lambda, Virology 87: 437.PubMedCrossRefGoogle Scholar
  129. Fuller, M., and King, J., 1980, Regulation of coat protein polymerization by the scaffolding protein of bacteriophage P22, Biophys. J. 23: 381.CrossRefGoogle Scholar
  130. Fuller, M., and King, J., 1982, Assembly in vitroof bacteriophage P22 procapsids from purified coat and scaffolding subunits, J. Mol. Biol. 156: 633.PubMedCrossRefGoogle Scholar
  131. Fuller, S., and Argos, P., 1987, Is sinbis a simple picomavirus with an envelope? EMBO J. 6: 1099.PubMedGoogle Scholar
  132. Geiduschek, E. P., Elliott, T., and Kassavetis, G., 1983, Regulation of late gene expression, in: Bacteriophage T4(C. Mathews, E. Kutter, G. Mosig, and P. Berget, eds.), pp. 189192, ASM Publications, Washington.Google Scholar
  133. Geisselsoder, J., Sedivy, J., Walsh, R., and Goldstein, R., 1982, Capsid structure of satellite phage P4 and its P2 helper, J. Ultrastr. Res. 79: 165.CrossRefGoogle Scholar
  134. Georgopoulos, C., Hendrix, R., Kaiser, A. D., and Wood, W. B., 1972, Role of the host cell in bacteriophage morphogenesis: Effect of a bacterial mutation on T4 head assembly, Nature New Biol. 239: 38.PubMedCrossRefGoogle Scholar
  135. Georgopoulos, C., Hendrix, R., Casjens, S., and Kaiser, A., 1973, Host participation in bacteriophage lambda head assembly, J. Mol. Biol. 76: 45.PubMedCrossRefGoogle Scholar
  136. Georgopoulos, C., Tilly, K., and Casjens, S., 1983, Lambdoid phage head assembly, in: Lambda II( R. Hendrix, J. Roberts, F. Stahl, and R. Weisberg, eds.), pp. 279–304, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  137. Gill, G., Hull, R., and Curtiss, R., 1981, Mutator bacteriophage D108 and its DNA: An electron microscopic characterization, J. Virol. 37: 420.PubMedGoogle Scholar
  138. Giphart-Gassler, M., Plastemak, R., and Van de Putte, P., 1982, G inversion in bacteriophage Mu: A novel way of gene splicing, Nature 297: 339.PubMedCrossRefGoogle Scholar
  139. Goldberg, E., 1983, Recognition, attachment and injection, in: Bacteriophage T4( C. Mathews, E. Kutter, G. Mosig, and P. Berget, eds.), pp. 32–39, ASM Publications, Washington.Google Scholar
  140. Goldenberg, D., and King, J., 1982, Trimeric intermediate in the in vivo folding and subunit assembly of the tail spike endorhamnosidase of the tail spike of bacteriophage P22, Proc. Natl. Acad. Sci. USA 79: 3403.CrossRefGoogle Scholar
  141. Gope, R., and Serwer, P., 1983, Bacteriophage P22 in vitro packaging monitored by agarose gel electrophoresis: Rate of DNA entry into capsids, J. Virol. 47: 96.PubMedGoogle Scholar
  142. Granboulan, P., 1983, The tail fiber of bacteriophage T4 is sensitive to proteases at elevated temperatures. Gen. Microbiol. 129: 2217.Google Scholar
  143. Grayhack, E., Yang, X., Lan, L., and Roberts, J., 1985, Phage lambda gene Q antiterminator recognizes RNA polymerase near the promoter and accelerates it through a pause site, Cell 42: 259.PubMedCrossRefGoogle Scholar
  144. Grundy, F., and Howe, M., 1984, Involvement of the invertible G segment in bacteriophage Mu tail fiber biosynthesis, Virology 134: 296.PubMedCrossRefGoogle Scholar
  145. Haas, R., Murphy, R., and Cantor, C., 1982, Testing models of the arrangement of DNA inside X by crosslinking the packaged DNA, J. Mol. Biol. 159: 71.PubMedCrossRefGoogle Scholar
  146. Hafner, E., Tabor, C., and Tabor, H., 1979, Mutants of Escherishia coli that do not contain 1,4-diaminobutane (putrescine) or spermidine. Biol. Chem. 154: 12419.Google Scholar
  147. Hagen, E. W., Reilly, B. E., Tosi, M. E., and Anderson, D. L., 1976, Analysis of gene function of bacteriophage X29 of Bacillus subtilis: Identification of cistrons essential for viral assembly, J. Virol. 19: 501.PubMedGoogle Scholar
  148. Harrison, S., 1983a, Virus structure: High-resolution perspectives, Adv. Virus Res. 28: 175.CrossRefGoogle Scholar
  149. Harrison, S., 1983b, Packaging of DNA into bacteriophage heads: A model, /. Mol. Biol. 171: 577.CrossRefGoogle Scholar
  150. Hartwieg, E., Bazinet, C., and King, J., 1986, DNA injection apparatus of phage P22, Biophys. J. 49: 24.PubMedCrossRefGoogle Scholar
  151. Hayden, M., Adams., M., and Casjens, S., 1985, Bacteriophage L: Chromosome physical map and structural proteins, Virology 147: 431.Google Scholar
  152. Hendrix, R., 1978, Symmetry mismatch and DNA packaging in large DNA bacteriophages, Proc. Natl. Acad. Sci. USA 75: 4779.CrossRefGoogle Scholar
  153. Hendrix, R., 1979, Purification and properties of groE, a host protein involved in bacteriophage assembly, J. Mol. Biol. 129: 375.PubMedCrossRefGoogle Scholar
  154. Hendrix, R., and Casjens, S., 1974a, Protein cleavage in bacteriophage X tail assembly, Virology 61: 156.CrossRefGoogle Scholar
  155. Hendrix, R., and Casjens, S., 1974b, Protein fusion: A novel reaction in bacteriophage X head assembly, Proc. Natl. Acad. Sci. USA 71: 1451.CrossRefGoogle Scholar
  156. Hendrix, R., and Casjens, S., 1975, Protein processing and its genetic control in petit X assembly, J. Mol. Biol. 91: 187.PubMedCrossRefGoogle Scholar
  157. Hendrix, R., Roberts, J., Stahl, F., and Weisberg, R. (eds.), 1983, Lambda II, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  158. Herranz, L., Salas, M., and Carrascosa, J., 1986, Interaction of bacteriophage X29 connector protein with the viral DNA, Virology 155: 289.PubMedCrossRefGoogle Scholar
  159. Herrmann, R., 1982, Nucleotide sequence of bacteriophage T4 gene 57 and deduced amino acid sequence, Nucleic Acids Res. 10: 1105.PubMedCrossRefGoogle Scholar
  160. Herskowitz, I., and Hagen, D., 1980, The lysis-lysogeny decision of phage lambda: Explicit programming and responsiveness, Annu. Rev. Genet. 14: 399.PubMedCrossRefGoogle Scholar
  161. Ho, Y., and Rosenberg, M., 1985, Characterization of a third, cII-dependent, coordinately activated promoter on phage lambda involved in lysogeneic development, J. Biol. Chem. 260: 11838.PubMedGoogle Scholar
  162. Hoffman, B., and Levine, M., 1975, Bacteriophage P22 virion protein which performs an essential early function. II. Characterization of the gene 16 function. Virol. 16: 1547.Google Scholar
  163. Hogle, J., Chow, M., and Filman, D., 1985, Three-dimensional structure of poliovirus at 2.9A resolution, Science 229: 1358.PubMedCrossRefGoogle Scholar
  164. Hohn, B., 1983, DNA sequences necessary for packaging of bacteriophage X DNA, Proc. Natl. Acad. Sci. USA 80: 7456.CrossRefGoogle Scholar
  165. Hohn, B., Wurtz, M., Klein, B., Lustig, A., and Hohn, T., 1974, Phage lambda DNA packaging in vitro, J. Supramoí. Struct. 2: 302.CrossRefGoogle Scholar
  166. Hohn, T., Wurtz, M., and Hohn, B., 1976, Capsid transformation during packaging of bacteriophage X DNA, Phil. Trans. R. Soc. Lond. B 276: 51.CrossRefGoogle Scholar
  167. Hohn, T., Holm, B., Engel, A., Wurtz, M., and Smith, P. R., 1979, Isolation and characterization of the host protein groE involved in bacteriophage lambda assembly, J. Mol. Biol. 129: 359.PubMedCrossRefGoogle Scholar
  168. Hoopes, B., and McClure, W., 1985, A cII-dependent promoter is located within the Q gene of bacteriophage lambda, Proc. Natl. Acad. Sci. USA 82: 3134.PubMedCrossRefGoogle Scholar
  169. Howatson, A., and Kemp, C., 1975, The structure of tubular head forms of bacteriophage X: Relation to the capsid structure of petit X and normal X heads, Virology 67: 80.PubMedCrossRefGoogle Scholar
  170. Hsiao, C. L., and Black, L. W., 1978, Head morphogenesis of bacteriophage T4. II. The role of gene 40 in initiating prehead assembly, Virology 91: 15.PubMedCrossRefGoogle Scholar
  171. Iida, S., 1984, Bacteriophage P1 carries two related sets of genes determining its host range in the invertible C segment of its genome, Virology 134: 421.PubMedCrossRefGoogle Scholar
  172. Iida, S., Hiestand-Nauer, R., Meyer, J., and Arber, W., 1985, Crossover sites cix for inversion of invertible DNA segment C on the bacteriophage P7 genome, Virology 143: 347.PubMedCrossRefGoogle Scholar
  173. Imber, R., Tsugita, A., Wurtz, M., and Hohn, T., 1980, The outer surface protein of bacteriophage lambda, J. Mol. Biol. 139: 277.PubMedCrossRefGoogle Scholar
  174. Ishii, T., and Yanagida, M., 1975, Molecular organization of the shell of T-even bacteriophage heads, J. Mol. Biol. 97: 655.PubMedCrossRefGoogle Scholar
  175. Ishii, T., and Yanagida, M., 1977, The two dispensible structural proteins Isoc and hoc) of the T4 phage capsid: Their properties, isolation and characterization of defective mutants, and their binding to defective heads in vitro, J. Mol. Biol. 109: 487.PubMedCrossRefGoogle Scholar
  176. Ishii, T, Yamaguchi, Y., and Yanagida, M., 1978, Binding of the structural protein soc to the head shell of bacteriophage T4, J. Mol. Biol. 120: 533.PubMedCrossRefGoogle Scholar
  177. Isobe, T., Black, L., and Tsugita, A., 1976a, Primary structure of bacteriophage T4 internal protein II and characterization of the cleavage upon phage maturation, J. Mol. Biol. 102: 349.CrossRefGoogle Scholar
  178. Isobe, T., Black, L., and Tsugita, A., 1976b, Protein cleavage during virus assembly: A novel specificity of assembly dependent cleavage in bacteriophage T4, Proc. Natl. Acad. Sci. USA 73: 4209.CrossRefGoogle Scholar
  179. Israel, V., 1977, E proteins of bacteriophage P22 I. Identification and ejection from wild-type and defective particles. Virol. 23: 91.Google Scholar
  180. Israel, V., 1978, A model for the adsorption of phage P22 to Salmonella typhimurium, 1. Gen. Virol. 40: 669.CrossRefGoogle Scholar
  181. Iwashita, S., and Kanegasaki, S., 1976a, Enzymic and molecular properties of baseplate parts of bacteriophage P22, Eur. J. Biochem. 65: 87.CrossRefGoogle Scholar
  182. Iwashita, S., and Kanegasaki, S., 1976b, Deacetylation reaction catalyzed by Salmonellaphage c341 and its baseplate parts. Biol. Chem. 251: 5361.Google Scholar
  183. Jacks, T., and Varmus, H., 1985, Expression of the Rous sarcoma virus polgene by ribosomal frameshifting, Science 230: 1237.PubMedCrossRefGoogle Scholar
  184. Jimenez, J., Santisteban, A., Carazo, J., and Carrascosa, J., 1986, Computer graphic display method for visualizing three-dimensional structures, Science 232: 113.CrossRefGoogle Scholar
  185. Kamp, D., and Sandulache, R., 1983, Recognition of cell surface receptors is controlled by invertible DNA of Mu, FEMS Microbiol. Lett. 16: 131.CrossRefGoogle Scholar
  186. Kanegasaki, S., and Wright, A., 1973, Studies on the mechanism of phage adsorption: Interaction between phage €15 and its cellular receptor, Virology 52: 160.PubMedCrossRefGoogle Scholar
  187. Kao, S., and McClain, W, 1980, Baseplate protein of bacteriophage T4 with both structural and lytic functions, J. Virol. 34: 95.PubMedGoogle Scholar
  188. Kar, S., 1983, Structural proteins of bacteriophage lambda: Purification, characterization and localization, PhD thesis, University of Pittsburgh.Google Scholar
  189. Kastelein, R., Remaut, E., Feirs, W., and Van Duin, J., 1982, Lysis gene expression of RNA phage MS2 depends on a frameshift during translation of the overlapping coat protein gene, Nature 295: 35.PubMedCrossRefGoogle Scholar
  190. Kato, H., Fujisawa, H., and Minagawa, T., 1985a, Genetic analysis of subunit assembly of the tail fiber of bacteriophage T3, Virology 146: 12.CrossRefGoogle Scholar
  191. Kato, H., Fujisawa, H., and Minagawa, T., 1985b, Purification and characterization of gene 17product of bacteriophage T3, Virology 146: 22.CrossRefGoogle Scholar
  192. Kato, H., Fujisawa, H., and Minagawa, T., 1986, Subunit arrangement of the tail fiber of bacteriophage T3, Virology 153: 80.PubMedCrossRefGoogle Scholar
  193. Katsura, I., 1976, Morphogenesis of bacteriophage lambda tail: Polymorphism in the assembly of the major tail protein, J. Mol. Biol. 107: 307.PubMedCrossRefGoogle Scholar
  194. Katsura, I., 1983a, Structure and inherent properties of bacteriophage lambda head shell. IV. Small head mutants. Mol. Biol. 171: 297.CrossRefGoogle Scholar
  195. Katsura, I., 1983b, Tail assembly and injection, in: Lambda II( R. Hendrix, J. Roberts, F. Stahl, and R. Weisberg, eds.), pp. 331–346, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  196. Katsura, I., 1987, Determination of bacteriophage X tail length by a protein ruler, Nature 327: 73.PubMedCrossRefGoogle Scholar
  197. Katsura, I., and Hendrix, R., 1984, Length determination in bacteriophage lambda tails, Cell 39: 691.PubMedCrossRefGoogle Scholar
  198. Katsura, I., and Kühl, P. W., 1975, Morphogenesis of the tail of bacteriophage X. III. Morphogenetic pathway, J. Mol. Biol. 91: 257.PubMedCrossRefGoogle Scholar
  199. Katsura, I., and Tsugitsa, A., 1977, Purification and characterization of the major protein and the termination protein of the bacteriophage lambda tail, Virology 76: 129.PubMedCrossRefGoogle Scholar
  200. Keller, B., Senstag, C., Kellenberger, E., and Bickel, T., 1984, Gene 68, a new bacteriophage T4 gene which codes for the 17 Kd prohead core protein is involved in head size determination, J. Mol. Biol. 179: 415.PubMedCrossRefGoogle Scholar
  201. Kells, S., and Hazelkorn, R., 1974, Bacteriophage T4 short tail fibers are the product of gene 12, J. Mol. Biol. 83: 473.PubMedCrossRefGoogle Scholar
  202. Kemper, B., Garabett, M., and Courage, U., 1981, Studies on T4 head maturation. II. Sub- strate specificity of gene-49-controlled endonuclease, Eur. J. Biochem. 115: 133.PubMedCrossRefGoogle Scholar
  203. Kikuchi, Y., and King, J., 1975a, Genetic control of bacteriophage T4 baseplate morphogenesis. I. Sequential assembly of the major precursor, in vivoand in vitro, J. Mol. Biol. 99: 645.CrossRefGoogle Scholar
  204. Kikuchi, Y., and King, J., 1975b, Genetic control of bacteriophage T4 baseplate morphogenesis. II. Mutants unable to form the central part of the baseplate, J. Mol. Biol. 99: 673.CrossRefGoogle Scholar
  205. Kikuchi, Y., and King, J., 1975e, Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. Mol. Biol. 99: 695.CrossRefGoogle Scholar
  206. Kim, J., and Davidson, N., 1974, Electron microscope heteroduplex study of sequence relations of T2, T4, and T6 bacteriophage DNA’s, Virology 57: 93.PubMedCrossRefGoogle Scholar
  207. King, J., 1968, Assembly of the tail of bacteriophage T4, J. Mol. Biol. 32: 231.PubMedCrossRefGoogle Scholar
  208. King, J., 1971, Bacteriophage T4 tail assembly: Four steps in core formation, J. Mol. Biol. 58: 693.PubMedCrossRefGoogle Scholar
  209. King, J., 1980, Regulation of structural protein interactions as revealed in phage morphogenesis, in: Biological Regulation and Development (R. Goldberger, ed.), pp. 101132, Plenum Press, New York.Google Scholar
  210. King, J., and Casjens, S., 1974, Catalytic head assembling protein in virus morphogenesis, Nature 251: 112.PubMedCrossRefGoogle Scholar
  211. King, J., and Laemmli, U, 1971, Polypeptides of the tail fibers of bacteriophage T4, J. Mol. Biol. 62: 465.PubMedCrossRefGoogle Scholar
  212. King, J., and Mykolajewycz, N., 1973, Bacteriophage T4 tail assembly: Proteins of the sheath, core and baseplate, J. Mol. Biol. 75: 39.Google Scholar
  213. King, J., Lenk, E., and Botstein, D., 1973, Mechanism of head assembly and DNA encapsidation in Salmonella phage P22. II. Morphogenetic pathway, J. Mol. Biol. 80: 697.PubMedCrossRefGoogle Scholar
  214. King, J., Hall, C., and Casjens, S., 1978, Control of the synthesis of phage P22 scaffolding protein is coupled to capsid assembly, Cell 15: 551.PubMedCrossRefGoogle Scholar
  215. Kistler, J., Aebi, U., Onorato, L., ten Heggler, B., and Showe, M., 1978, Structural changes during transformation of T4 polyheads. I. Characterization of the initial and final states by Fab-fragment labelling of freeze-dried and shadowed preparations, J. Mol. Biol. 126: 571.PubMedCrossRefGoogle Scholar
  216. Kochan, J., and Murialdo, H., 1982, Stimulation of groE synthesis in Escherichia coliby bacteriophage lambda infection, J. Bacteriol. 149: 1166.PubMedGoogle Scholar
  217. Kochan, J., and Murialdo, H., 1983, Early intermediates in bacteriophage lambda prohead assembly. II. Identification of biologically active intermediates, Virology 131: 100.PubMedCrossRefGoogle Scholar
  218. Kochan, J., Carrascosa, J., and Murialdo, H., 1984, Bacteriophage lambda preconnectors: Purification and structure, J. Mol. Biol. 174: 433.PubMedCrossRefGoogle Scholar
  219. Kocher, F., 1979, Two theorems in solid geometry, J. Mol. Biol. 127: 39.PubMedCrossRefGoogle Scholar
  220. Kozloff, L., 1983, The T4 particle: Low-molecular weight compounds and associated enzymes, in: Bacteriophage T4( C. Mathews, E. Kutter, G. Mosig, and P. Berget, eds.), pp. 25–31, ASM Publications, Washington.Google Scholar
  221. Kozloff, L., and Lute, M., 1960, Calcium content of bacteriophage T2, Biochim. Biophys. Acta 37: 420.PubMedCrossRefGoogle Scholar
  222. Kozloff, L., and Lute, M., 1977, Zinc, an essential component of the baseplates of T-even bacteriophages, J. Biol. Chem. 252: 7715.PubMedGoogle Scholar
  223. Kozloff, L., and Lute, M., 1981, Dual functions of bacteriophage T4D gene 28product. II. Folate and polyglutamate cleavage activity of uninfected and infected Escherichia colicells and bacteriophage particles, J. Virol. 40: 645.PubMedGoogle Scholar
  224. Kozloff, L., and Lute, M., 1984, Identification of bacteriophage T4D gene products 26 and 51 as baseplate hub structural components, J. Virol. 52: 344.PubMedGoogle Scholar
  225. Kozloff, L., and Zorzopulos, J., 1981, Dual functions of T4D gene 28product: Structural components of the viral baseplate central plug and cleavage enzyme for folyl polyglutamates. I. Identification of T4D gene 28product in the tail plug, J. Virol. 40: 635.PubMedGoogle Scholar
  226. Kozloff, L., Crosby, L., and Lute, M., 1979, Structural role of the polyglutamate portion of the folate found in T4D bacteriophage baseplate, J. Virol. 32: 497.PubMedGoogle Scholar
  227. Kuhn, A., Keller, B., Maeder, M., and Traub, F., 1987, Prohead core of bacteriophage T4 can act as an intermediate in the T4 head assembly pathway, J. Virol. 61: 113.PubMedGoogle Scholar
  228. Kurtz, M., and Champe, S., 1977, Precursors of the T4 internal peptides, J. Virol. 22: 412.PubMedGoogle Scholar
  229. Kwiatowski, B., Beilharz, H., and Stirm, S., 1975, Disruption of Vi bacteriophage III and localization of its deacetylase activity, J. Gen. Virol. 29: 267.CrossRefGoogle Scholar
  230. Kypr, J., and Mrazek, J., 1986, Lambda phage protein Nul contains the conserved DNA binding fold of repressors, J. Mol. Biol. 191: 139.PubMedCrossRefGoogle Scholar
  231. Laemmli, U., and Eiserling, F., 1968, Studies on the morphopoiesis of the head of phage T-even. IV. The formation of polyheads, J. Mol. Biol. 80: 575.CrossRefGoogle Scholar
  232. Laemmli, U., Beguin, F., and Gujer-Kellenberger, B., 1969, A factor preventing the major head protein of bacteriophage T4 from random aggregation, J. Mol. Biol. 47: 69.CrossRefGoogle Scholar
  233. Laemmli, U., Molbert, E., Showe, M., and Kellenberger, E., 1970, Form determining function of the genes required for the assembly of the head of bacteriophage T4, J. Mol. Biol. 49: 99.PubMedCrossRefGoogle Scholar
  234. Lake, J., and Leonard, K., 1974, Structure and protein distribution for the capsid of Caulobacter crescentus bacteriophage Cbk, J. Mol. Biol. 86: 499.PubMedCrossRefGoogle Scholar
  235. Lauffer, M., and Stevens, C., 1968, Structure of the tobacco mosaic virus particle and polymerization of tobacco mosaic virus protein, Adv. Virus Res. 13: 1.PubMedCrossRefGoogle Scholar
  236. Lemaux, P. G., Herendeen, S. L., Bloch, P. L., and Neidhardt, F. C., 1978, Transient rates of synthesis of individual polypeptides in E. colifollowing temperature shifts, Cell 13: 427.PubMedCrossRefGoogle Scholar
  237. Lengyel, J., Goldstein, R., Marsh, M., Sunshine, M., and Calendar, R., 1973, Bacteriophage P2 morphogenesis: Cleavage of the major capsid protein, Virology 53: 1.PubMedCrossRefGoogle Scholar
  238. Leonard, K., Kleinschmidt, A., and Lake, J., 1973, Caulobacter crescentusbacteriophage diCbK: Structure and in vitroself assembly of the tail, J. Mol. Biol. 81: 349.Google Scholar
  239. Lepault, J., and Leonard, K., 1985, Three-dimensional structure of unstained frozen-hydrated extended tails of bacteriophage T4, J. Mol. Biol. 182: 431.PubMedCrossRefGoogle Scholar
  240. Lepault, J., Dubocet, J., Baschong, W., and Kellenberger, E., 1987, Organization of double-stranded DNA in bacteriophages: A study by cryoelectron microscopy of vitrified samples, EMBO J. 6: 1507.PubMedGoogle Scholar
  241. Losick, R., and Pero, J., 1981, Cascades of sigma factors, Cell 25: 582.PubMedCrossRefGoogle Scholar
  242. Lovett, P., 1972, PBP1: A flagella specific bacteriophage mediating transduction in Bacillus pumilus, Virology 47: 743.PubMedCrossRefGoogle Scholar
  243. MacDonald, P., Kutter, E., and Mosig, G., 1984, Regulation of a bacteriophage T4 late gene, soc, which maps in the early region, Genetics 106: 17.PubMedGoogle Scholar
  244. Male, C., and Kozloff, L., 1973, Function of T4D structural dihydrofolate reductase in bacteriophage infection, J. Virol. 11: 840.PubMedGoogle Scholar
  245. Mathews, C., Kutter, E., Mosig, G., and Berget, P. (eds.), 1983, Bacteriophage T4, ASM Publications, Washington.Google Scholar
  246. Matsuo-Kato, H., Fujisawa, H., and Minagawa, T., 1981, Structure and assembly of bacteriophage T3 tails, Virology 109: 157.PubMedCrossRefGoogle Scholar
  247. Matthews, R., (Ed.) 1987, A critical appraisal of viral taxonomy, CRC Press, Boca Raton, Florida.Google Scholar
  248. McNicol, L., Simon, L., and Black, L., 1977, A mutation which bypasses the requirement for p24 in bacteriophage T4 capsid morphogenesis, J. Mol. Biol. 116: 261.PubMedCrossRefGoogle Scholar
  249. Meezan, E., and Wood, W., 1971, The sequence of gene product interaction in bacteriophage T4 tail core assembly, J. Mol. Biol. 58: 685.PubMedCrossRefGoogle Scholar
  250. Mellado, R., Barthelemy, I., and Salas, M., 1986, In vivo transcription of bacteriophage X29 DNA early and late promoter sequences, J. Mol. Biol. 191: 191.PubMedCrossRefGoogle Scholar
  251. Michel, C., Jacq, B., Arques, D., and Bickle, T., 1986, A remarkable amino acid sequence homology between a phage T4 tail fibre protein and ORF314 of phage X located in the tail operon, Gene 44: 147.PubMedCrossRefGoogle Scholar
  252. Miller, G., and Fiess, M., 1985, Sequence of the left end of phage 21 DNA, J. Mol. Biol. 183: 246.PubMedCrossRefGoogle Scholar
  253. Moody, M., 1965, The shape of the T-even bacteriophage head, Virology 26: 567.PubMedCrossRefGoogle Scholar
  254. Moody, M., 1971, Application of optical diffraction to helical structures in the bacteriophage tail, Phil. Trans. R. Soc. Lond. B 261: 181.CrossRefGoogle Scholar
  255. Moody, M., 1973, Sheath of bacteriophage T4. III. Contraction mechanism deduced from partially contracted sheaths, J. Mol. Biol. 80: 613.PubMedCrossRefGoogle Scholar
  256. Moody, M., and Makowski, L., 1981, X-ray diffraction study of tail tubes from bacteriophage T2L, J. Mol. Biol. 150: 217.PubMedCrossRefGoogle Scholar
  257. Mosher, R., and Mathews, C., 1979, Bacteriophage T4-coded dihydrofolate reductase: Synthesis, turnover, and location of the virion protein, J. Virol. 31: 94.PubMedGoogle Scholar
  258. Muller-Salamin, L., Onorato, L., and Showe, M., 1977, Localization of the minor head components of bacteriophage T4, J. Virol. 24: 121.PubMedGoogle Scholar
  259. Murialdo, H., 1979, Early intermediates in bacteriophage lambda prohead assembly, Virology 96: 341.PubMedCrossRefGoogle Scholar
  260. Murialdo, H., and Becker, A., 1978a, Head morphogenesis of complex double-stranded desoxyribonucleic acid bacteriophages, Microbiol. Rev. 42: 529.Google Scholar
  261. Murialdo, H., and Becker, A., 1978b, A genetic analysis of bacteriophage lambda prohead assembly in vitro, J. Mol. Biol. 125: 57.CrossRefGoogle Scholar
  262. Murialdo, H., and Ray, P., 1975, Model for the arrangement of minor structural proteins in the head of bacteriophage lambda, Nature 257: 815.PubMedCrossRefGoogle Scholar
  263. Murialdo, H., and Siminovitch, L., 1972, The morphogenesis of bacteriophage lambda. IV. Identification of gene products and control of the expression of the morphogenetic information, Virology 48: 785.PubMedCrossRefGoogle Scholar
  264. Nakagawa, H., Arisaka, F., and Ishii, S., 1985, Isolation and characterization of bacteriophage T4 tail-associated lysozyme, J. Virol. 54: 460.PubMedGoogle Scholar
  265. Nakamura, K., and Kozloff, L., 1978, Folate polyglutamates in T4D bacteriophage and T4Dinfected Escherichia coli, Biochim. Biophys. Acta 540: 313.Google Scholar
  266. Nakasu, S., Fujisawa, H., and Minagawa, T., 1985, Purification and characterization of gene 8 product of bacteriophage T3, Virology 143: 422.PubMedCrossRefGoogle Scholar
  267. Neidhardt, F. C., Phillips, T. A., VanBogelen, R. A., Smith, M. W., Georgalis, Y., and Subramanian, A. R., 1981, Identity of the B56.5 protein, the A-protein, and the groE gene product of Escherichia coli, J. Bacteriol. 145: 513.Google Scholar
  268. Nelson, R., Reilly, B., and Anderson, D., 1976, Morphogenesis of bacteriophage.29 of Bacillus subtilisPreliminary isolation and characterization of intermediate particles of the assembly pathway. Virol. 19: 518.Google Scholar
  269. Oakley, J., and Coleman, J., 1977, Structure of a promoter for T7 RNA polymerase, Proc. Natl. Acad. Sci. USA 74: 4266.CrossRefGoogle Scholar
  270. Oliver, D., and Crowther, R. A., 1981, DNA sequence of the tail fiber genes 36 and 37 of bacteriophage T4, J. Mol. Biol. 153: 545.PubMedCrossRefGoogle Scholar
  271. Oliver, D., and Goldberg, E., 1977, Protection of parental T4 DNA from a restriction exonuclease by the product of gene 2, J. Mol. Biol. 116: 877.PubMedCrossRefGoogle Scholar
  272. Papadopoulos, S., and Smith, P. R., 1982, The structure of the tail of.CbK, J. Ultrastr. Res. 80: 62.CrossRefGoogle Scholar
  273. Parker, M., Christensen, A., Boosman, A., Stackard, J., Young, E., and Doermann, G., 1984, Nucleotide sequence of bacteriophage T4 gene 23and the amino acid sequence of its product, J. Mol. Biol. 180: 399.PubMedCrossRefGoogle Scholar
  274. Paulson, J. R., and Laemmli, U. K., 1977, Morphogenetic core of the bacteriophage T4 head. Structure of the core in polyheads, J. Mol. Biol. 111: 459.PubMedCrossRefGoogle Scholar
  275. Pelham, HRB., 1986, Speculation on the functions of the major heat shock and glucoseregulated proteins, Cell 46: 959.PubMedCrossRefGoogle Scholar
  276. Plishker, M., and Berget, P., 1984, Isolation and characterization of precursors in bacteriophage T4 baseplate assembly pathway. III. The carboxyl termini of proteins P11 are required for assembly activity, J. Mol. Biol. 178: 699.PubMedCrossRefGoogle Scholar
  277. Poglazov, B., and Nicoskaya, T., 1969, Self-assembly of the protein of bacteriophage T2 tail cores, J. Mol. Biol. 43: 231.PubMedCrossRefGoogle Scholar
  278. Poteete, A., and King, J., 1977, Functions of two new genes in Salmonellaphage P22 assembly, Virology 76: 725.PubMedCrossRefGoogle Scholar
  279. Poteete, A., Jarvick, V., and Botstein, D., 1979, Encapsidation of P22 DNA in vitro, Virology 95: 550.CrossRefGoogle Scholar
  280. Prescott, B., Yu, M.-H., King, J., and Thomas, G. Jr., 1986, Thermostability of the secondary structure of wild type and mutant forms of phage P22 tail spike protein, Biophys. J. 49: 438.Google Scholar
  281. Purobit, S., Bestwick, R., Lasser, G., Rogers, C., and Mathews, C., 1981, T4 phage-coded dihydrofolate reductase. Subunit composition and cloning of its structural gene, J. Biol. Chem. 256: 9121.Google Scholar
  282. Ramirez, G., Mendez, E., Salas, M., and Vinuela, E., 1972, Head-neck connecting protein in phage.29, Virology 48: 263.PubMedCrossRefGoogle Scholar
  283. Randall-Hazelbauer, L., and Schwartz, M., 1973, Isolation of the bacteriophage lambda receptor from Escherichia coli, J. Bacteriol. 116: 1436.Google Scholar
  284. Ray, P., and Murialdo, H., 1975, The role of gene Nu3 in bacteriophage lambda head morphogenesis, Virology 64: 247.PubMedCrossRefGoogle Scholar
  285. Ray, P., and Pearson, M., 1974, Evidence for the posttranscriptional control of the morphogenetic genes of lambda, J. Mol. Biol. 85: 163.PubMedCrossRefGoogle Scholar
  286. Ray, P., and Pearson, M., 1975, Functional inactivation of bacteriophage lambda morphogenetic gene mrna, Nature 253: 647.PubMedCrossRefGoogle Scholar
  287. Ray, P., and Pearson, M., 1976, Synthesis of morphogenetic proteins by mutants of bacteriophage lambda carrying tandem duplications, Virology 73: 381.PubMedCrossRefGoogle Scholar
  288. Rayment, I., 1984, Animal virus structure, in: Biological Macromolecules and Assemblies, Vol. 1: Virus Structure( F. Jumak and A. McPherson, eds.), pp. 255–298, John Wiley and Sons, New York.Google Scholar
  289. Rayment, I., Baker, T., and Caspar, D., 1982, Polyoma virus capsid structure at 22.5A resolution, Nature 295: 110.PubMedCrossRefGoogle Scholar
  290. Reide, I., 1986, T-even type phages can change their host range by recombination with gene 34(tail fibre) or gene 23(head), Mol. Gen. Genet. 205: 160.CrossRefGoogle Scholar
  291. Reide, I., Degen, M., and Henning, U., 1985a, The receptor specificity of bacteriophage can be determined by a tail fiber modifying protein, EMBO J. 4: 2343.Google Scholar
  292. Reide, I., Drexler, K., and Eschbach, M., 1985b, Nucleotide sequence of the tail fiber gene 36 of bacteriophage T2 and of 36 genes of T-even type Escherichia colibacteriophages K3 and Ox2, Nucleic Acids Res. 13: 605.CrossRefGoogle Scholar
  293. Reide, I., Drexler, K., and Eschbach, M., 1985e, Presence of DNA, encoding parts of bacteriophage tail fiber genes, in chromosome of Escherichia coliK12, J. Bacteriol. 163: 832.Google Scholar
  294. Reide, I., Drexler, K., Eschbach, M., and Henning, U., 1986, DNA sequence of the tail fiber genes 37, encoding the receptor recognizing part of the fiber, of bacteriophages T2 and K3, J. Mol. Biol. 191: 255.CrossRefGoogle Scholar
  295. Reiger, D., Freund-Molbert, E., and Stirm, S., 1976, Escherichia colicapsule bacteriophages. VIII. Fragments of bacteriophage 28–1, 1. Virol. 17: 859.Google Scholar
  296. Reiger-Hug, D., and Stirm, S., 1981, Comparative study of host capsule depolymerases associated with Klebsiellabacteriophages, Virology 113: 363.CrossRefGoogle Scholar
  297. Reilly, B., Nelson, R., and Anderson, D., 1977, Morphogenesis of 4329 of Bacillus subtilis: Mapping and functional analysis of the head fiber gene. Virol. 24: 363.Google Scholar
  298. Revel, H., 1981, Organization of the bacteriophage T4 tail fiber gene cluster 34–38, in: Bacteriophage Assembly( M. DuBow, ed.), pp. 353–364, Alan R. Liss, New York.Google Scholar
  299. Revel, H., Herrmann, R., and Bishop, J., 1976, Genetic analysis of T4 tail fiber assembly. II. Bacterial host mutants that allow bypass of T4 gene 57 function, Virology 72: 255.PubMedCrossRefGoogle Scholar
  300. Richards, K., Williams, R., and Calendar, R., 1979, Mode of DNA packing within bacteriophage heads. Mol. Biol. 78: 255.Google Scholar
  301. Roa, M., 1981, Receptor-triggered ejection of DNA and protein in phage lambda, FEMS Microbiol. Lett. 11: 257.CrossRefGoogle Scholar
  302. Roberts, M., White, J., Grutter, M., and Burnett, R., 1986, Three-dimensional structure of the adenovirus major coat protein hexon, Science 232: 1148.PubMedCrossRefGoogle Scholar
  303. Roeder, G., and Sadowski, P., 1977, Bacteriophage T7 morphogenesis: Phage-related particles in cells infected with wild-type and mutant T7 phage, Virology 76: 263.PubMedCrossRefGoogle Scholar
  304. Roessner, C., and Ihler, G., 1984, Proteinase sensitivity of bacteriophage lambda tail protein gpJ and gpH in complexes with lambda receptor, J. Bacteriol. 157: 165.PubMedGoogle Scholar
  305. Rose, J., Mosteller, R., and Yanofsky, C., 1970, Tryptophan messenger ribonucleic acid elongation rates and steady-state levels of tryptophan operon enzymes under various growth conditions, J. Mol. Biol. 51: 540.CrossRefGoogle Scholar
  306. Ross, P., and Subramanian, S., 1981, Thermodynamics of protein association reactions: Forces contributing to stability, Biochemistry 20: 3096.PubMedCrossRefGoogle Scholar
  307. Ross, P., Black, L., Bisher, M., and Steven, A., 1985, Assembly-dependent conformational changes in a viral capsid protein. Calorimetric comparison of successive conformational states of the gp23 surface lattice of bacteriophage T4, J. Mol. Biol. 183: 353.PubMedCrossRefGoogle Scholar
  308. Rossmann, M., and Erickson, J., 1985, Structure and assembly of icosahedral shells, in: Virus Structure and Assembly( S. Casjens, ed.), pp. 27–73, Jones and Bartlett, Boston.Google Scholar
  309. Rossmann, M., Arnold, E., Erickson, J., Frankenberger, E., Griffith, J., Hecht, H., Johnson, J., Kramer, G., Luo, M., Mosser, A., Reuckert, R., Sherry, B., and Vriend, G., 1985, Structure of a human common cold virus and functional relationship to other picornaviruses, Nature 317: 145.PubMedCrossRefGoogle Scholar
  310. Saigo, K., 1978, Isolation of high density mutants and identification of nonessential structural proteins in bacteriophage T5: Dispensibility of L shaped fibers and a secondary major head protein, Virology 85: 422.PubMedCrossRefGoogle Scholar
  311. Sanger, F., Coulson, G., Hong, G., Hill, D., and Petersen, G., 1982, Nucleotide sequence of bacteriophage X DNA, J. Mol. Biol. 162: 729.PubMedCrossRefGoogle Scholar
  312. Sauer, B., Ow, D., Ling, L., and Calendar, R., 1981, Mutants of bacteriophage P4 that are defective in the suppression of transcriptional polarity, J. Mol. Biol. 145: 29.PubMedCrossRefGoogle Scholar
  313. Savarthi, H., and Erickson, J., 1983, The self-assembly of the cowpea strain of southern bean mosaic virus: Formation of T= 1 and T=3 nucleoprotein complexes, Virology 126: 328.CrossRefGoogle Scholar
  314. Scandella, D., and Arber, W., 1976, Phage X DNA injection into Escherichia coli petmutants is restored by mutations in phage genes Vor H, Virology 69: 206.CrossRefGoogle Scholar
  315. Schuster, T., Scheele, R., Adams, M., Shire, S., Steckert, J., and Potschka, M., 1980, Studies of the mechanism of assembly of tobacco mosaic virus, Biophys. J. 32: 313.PubMedCrossRefGoogle Scholar
  316. Schwartz, M., 1976, The adsorption of coliphage lambda to its host: Effect of variations in the surface density of receptor and in phage-receptor affinity, J. Mol. Biol. 103: 521.PubMedCrossRefGoogle Scholar
  317. Serwer, P., 1976, The internal proteins of bacteriophage T7, /. Mol. Biol. 107: 271.CrossRefGoogle Scholar
  318. Serwer, P., 1980, A metrizamide-impermeable capsid of the DNA packaging pathway of bacteriophage T7, J. Mol. Biol. 138: 65.PubMedCrossRefGoogle Scholar
  319. Serwer, P., 1986, Arrangement of double-stranded DNA packaged in bacteriophage capsids. An alternative model, J. Mol. Biol. 190: 509.PubMedCrossRefGoogle Scholar
  320. Serysheva, I., Tourkin, A., Venyaminov, A., and Poglazov, B., 1984, On the presence of guanosine phosphate in the tail of bacteriophage T4, J. Mol. Biol. 179: 565.PubMedCrossRefGoogle Scholar
  321. Shade, S., Adler, J., and Ris, H., 1967, How bacteriophage x attacks motile bacteria, J. Virol. 1: 599.Google Scholar
  322. Shaw, J., and Murialdo, H., 1980, Morphogenetic genes C and Nu3overlap in bacteriophage lambda, Nature 283: 30.PubMedCrossRefGoogle Scholar
  323. Shore, D., Deho, D., Psipis, J., and Goldstein, R., 1978, Determination of capsid size by satellite bacteriophage P4, Proc. Natl. Acad. Sci. USA 75: 400.PubMedCrossRefGoogle Scholar
  324. Showe, M., 1979, Limited proteolysis during the maturation of bacteriophage T4, in: Limited Proteolysis in Microorganisms: Biological Function, Use in Protein Structural and Functional Studies, pp. 151–155, DHEW publication (NIH) 78–1591, U.S. Government Printing Office, Washington.Google Scholar
  325. Showe, M., and Onorato, L., 1978, A kinetic model for form-determination of the head of bacteriophage T4, Proc. Natl. Acad. Sci. USA 75: 4165.PubMedCrossRefGoogle Scholar
  326. Showe, M., Isobe, E., and Onorato, L., 1976a, Bacteriophage T4 prehead proteinase. I. Purification and properties of a bacteriophage enzyme which cleaves the capsid precursor proteins, J. Mol. Biol. 107: 35.CrossRefGoogle Scholar
  327. Showe, M., Isobe, E., and Onorato, L., 1976b, Bacteriophage T4 prehead proteinase. II. Its cleavage from the product of the 21and regulation in phage infected cells, J. Mol. Biol. 107: 55.CrossRefGoogle Scholar
  328. Silverstein, J., and Goldberg, E., 1976, T4 DNA injection. II. Protection of entering DNA from host exonuclease V, Virology 72: 212.PubMedCrossRefGoogle Scholar
  329. Simon, L. D., 1972, Infection of Escherichia coliby T2 and T4 bacteriophages as seen in the electron microscope: T4 head morphogenesis, Proc. Natl. Acad. Sci. USA 69: 907.PubMedCrossRefGoogle Scholar
  330. Simon, L. D., and Anderson, T., 1967a, Infection of Escherichia coliby T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration, Virology 32: 279.CrossRefGoogle Scholar
  331. Simon, L. D., and Anderson, T., 1967b, Infection of Escherichia coliby T2 and T4 bacteriophages as seen in the electron microscope. II. Structure and function of the baseplate, Virology 32: 298.CrossRefGoogle Scholar
  332. Simon, M., Davis, R., and Davidson, N., 1971, Heteroduplexes of DNA molecules of lambdoid phages: Physical mapping of their base sequence relationships by electron microscopy, in: The Bacteriophage Lambda( A. Hershey, ed.), pp. 313–328, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  333. Smith, P. R., Aebi, U., Josephs, R., and Kessel, M., 1976, Studies of the structure of the T4 bacteriophage tail sheath, J. Mol. Biol. 106: 275.Google Scholar
  334. Snopek, T., Wood, W., Conley, M., Chen, P., and Cozzarelli, N., 1977, Bacteriophage T4 RNA ligase is gene 63 product, the protein that promotes tail fiber attachment to the baseplate, Proc. Natl. Acad. Sci. USA 74: 3355.PubMedCrossRefGoogle Scholar
  335. Stahl, F., and Murray, N., 1966, The evolution of gene clusters and genetic circularity in microorganisms, Genetics 58: 569.Google Scholar
  336. Steitz, T. A., Anderson, W. F., Fletterick, R. J., and Anderson, C. M., 1977, High resolution crystal structures of yeast hexokinase complexes with substrates, activators, and inhibitors, J. Biol. Chem. 252: 4494.PubMedGoogle Scholar
  337. Stephenson, F., 1985, A cII-responsive promoter in the Q gene of bacteriophage lambda, Gene 35: 313.PubMedCrossRefGoogle Scholar
  338. Sternberg, N., and Coulby, J., 1987, Recognition and cleavage of the bacteriophage P1 packaging site (pac)I. Differential processing of the cleaved ends in vivo, J. Mol. Biol. 194: 453.Google Scholar
  339. Sternberg, N., and Weisberg, R., 1977, Packaging of coliphage X DNA. II. The role of the D gene protein, J. Mol. Biol. 117: 733.PubMedCrossRefGoogle Scholar
  340. Steven, A., and Truss, B., 1986, The structure of bacteriophage T7, in: Electron Microscopy of Proteins, Vol. 5, Viral Structure( J. Harris and R. Home, eds.), pp. 1–36, Academic Press, London.Google Scholar
  341. Steven, A., Couture, E., Aebi, U., and Showe, M., 1976, Structure of T4 polyheads. II. A pathway of polyhead transformations as a model for T4 capsid maturation, 1. Mol. Biol. 106: 187.CrossRefGoogle Scholar
  342. Steven, A., Serwer, P., Bisher, M., and Trus, B., 1983, Molecular architecture of bacteriophage T7 capsid, Virology 124: 109.PubMedCrossRefGoogle Scholar
  343. Studier, W., 1972, Bacteriophage T7. Genetic and biochemical analysis of this simple phage gives information about basic genetic processes, Science 176: 367.PubMedCrossRefGoogle Scholar
  344. Studier, W., 1979, Relationships among different strains of T7 and among T7-related bacteriophages, Virology 95: 70.PubMedCrossRefGoogle Scholar
  345. Svenson, S., Lonngren, J., Carlin, N., and Lindberg, A., 1979, Salmonellabacteriophage glycanases: Endorhamnosidases of Salmonella typhimuriumbacteriophages, J. Virol. 32: 583.Google Scholar
  346. Symonds, N., and Coelho, A., 1978, Role of the G segment in the growth of phage Mu, Nature 271: 573.PubMedCrossRefGoogle Scholar
  347. Szewczyk, B., Bienkowska-Szweczyk, C., and Kozloff, L., 1986, Identification of T4 gene 25product, a component of the tail baseplate, as a 15K lysozyme, Mol. Gen. Genet. 202: 363.PubMedCrossRefGoogle Scholar
  348. Terzaghi, B., Terzaghi, E., and Coombs, D., 1979, Mutational alteration of the T4D tail fiber attachment process, J. Mol. Biol. 127: 1.PubMedCrossRefGoogle Scholar
  349. Terzaghi, E., 1971, Alternative pathways of tail fiber assembly in bacteriophage T4, J. Mol. Biol. 59: 319.PubMedCrossRefGoogle Scholar
  350. Thirion, J., and Hofnung, M., 1971, On some aspects of phage X resistance to E. coliK12, Genetics 71: 702.Google Scholar
  351. Thomas, G. Jr., Li, Y., Fuller, M., and King, J., 1982, Structural studies of P22 phage, precursor particles, and proteins by laser Raman spectroscopy, Biochemistry 21: 3866.PubMedCrossRefGoogle Scholar
  352. Thomas, J., 1974, Chemical linkage of the tail to the right-hand end of bacteriophage lambda DNA, J. Mol. Biol. 87: 1.PubMedCrossRefGoogle Scholar
  353. Thomas, J., Sternberg, N., and Weisberg, R., 1978, Altered arrangement of the DNA in injection-defective lambda bacteriophage, J. Mol. Biol. 123: 149.PubMedCrossRefGoogle Scholar
  354. Thomas, R., 1964, On the genetic segment controlling immunity in temperate bacteriophages, J. Mol. Biol. 8: 247.PubMedCrossRefGoogle Scholar
  355. Tikhonenko, A., 1970, Ultrastructure of Viruses, Plenum Press, New York.Google Scholar
  356. Tilly, K., and Georgopoulos, C., 1982, Evidence that the two Escherichia coli groE morphogenetic gene products interact in vivo, J. Bacteriol. 149: 1082.PubMedGoogle Scholar
  357. Tilly, K., VanBogelen, R. A., Georgopoulos, C., and Neidhardt, F. C., 1983, Identification of the heat-inducible protein C15.4 as the groES gene product in Escherichia coli, J. Bacteriol. 154: 1505.Google Scholar
  358. To, C., Kellenberger, E., and Eisenstark, A., 1969, Disassembly of T-even bacteriophage into structural parts and subunits, J. Mol. Biol. 46: 493.PubMedCrossRefGoogle Scholar
  359. Tosi, M., and Anderson, D., 1973, Antigenic properties of bacteriophage 4)29. Structural proteins, J. Virol. 12: 1548.PubMedGoogle Scholar
  360. Tosi, M., Reilly, B., and Anderson, D., 1975, Morphogenesis of bacteriophage X29 of Bacillus subtilis: Cleavage and assembly of the neck appendage protein, J. Virol. 16: 1282.PubMedGoogle Scholar
  361. Toussaint, A., Lefebvre, N., Scott, J., Cowan, J., DeBruijn, F., and Bukhari, A., 1978, Relationships between temperate phages Mu and P1, Virology 89: 146.PubMedCrossRefGoogle Scholar
  362. Traub, F., and Maeder, M., 1984, Formation of the prohead core of bacteriophage T4 in vivo, J. Virol. 49: 892.PubMedGoogle Scholar
  363. Trimble, R., Galivan, J., and Maley, F., 1972, The temporal expression of T2r bacteriophage genes in vivoand in vitro, Proc. Natl. Acad. Sci. USA 69: 1659.CrossRefGoogle Scholar
  364. Tschopp, J., and Smith, P. R., 1978, Extra long T4 tails produced in in vitro conditions. Mol. Biol. 114: 281.Google Scholar
  365. Tschopp, J., Arisaka, F., Van Driel, R., and Engel, J., 1979, Purification, characterization and reassembly of the bacteriophage T4D tail sheath protein, J. Mol. Biol. 114: 281.CrossRefGoogle Scholar
  366. Tsui, L., and Hendrix, R., 1980, Head-tail connector of bacteriophage lambda. Mol. Biol. 142: 419.CrossRefGoogle Scholar
  367. Van de Putte, P., Kramer, S., and Giphart-Gassler, M., 1980, Invertible DNA determined host specificity of bacteriophage Mu, Nature 286: 218.PubMedCrossRefGoogle Scholar
  368. Van Driel, R., and Couture, E., 1978, Assembly of the scaffolding core of bacteriophage T4 preheads, J. Mol. Biol. 123: 713.PubMedCrossRefGoogle Scholar
  369. Volker, T., Gafner, J., Showe, M., and Bickle, T., 1982, Gene 67, a new essential bacteriophage T4 head gene codes for a pre-head core component, PIP. I. Genetic mapping and DNA sequence. Mol. Biol. 161: 491.CrossRefGoogle Scholar
  370. Wagenknecht, T., and Bloomfield, V., 1977, In vitro polymerization of bacteriophage T4D core subunits. Mol. Biol. 116: 347.CrossRefGoogle Scholar
  371. Walker, J., and Walker, D., 1981, Structural proteins of coliphage P1, in: Bacteriophage Assembly ( M. DuBow, ed.), pp. 67–77, Alan R. Liss, New York.Google Scholar
  372. Ward, S., and Dickson, R., 1971, Assembly of bacteriophage T4 tail fibers. III. Genetic control of the major tail fiber polypeptides. J. Mol. Biol. 62: 479.PubMedCrossRefGoogle Scholar
  373. Ward, S., Luftig, R., Wilson, J., Eddleman, H., Lyle, H., and Wood, W., 1970, Assembly of bacteriophage T4 tail fibers. II. Isolation and characterization of tail fiber precursors, J. Mol. Biol. 54: 15.PubMedCrossRefGoogle Scholar
  374. Wang, J., and Kaiser, A. D., 1973, Evidence that the cohesive ends of mature X DNA are generated by the A gene product, Nature New Biol. 241: 16.PubMedGoogle Scholar
  375. Weigle, J., 1966, Assembly of phage lambda in vitro, Proc. Natl. Acad. Sci. USA 55: 1462.CrossRefGoogle Scholar
  376. Weinstock, G., Riggs, P., and Botstein, D., 1980, Genetics of bacteriophage P22. III. The late operon, Virology 106: 82.PubMedCrossRefGoogle Scholar
  377. Williams, R., and Richards, K., 1974, Capsid structure of bacteriophage lambda, J. Mol. Biol. 88: 547.PubMedCrossRefGoogle Scholar
  378. Widom, J., and Baldwin, R., 1983, Tests of spool models for DNA packaging in phage lambda. Mol. Biol. 171: 419.CrossRefGoogle Scholar
  379. Witkiewicz, H., and Schweiger, M., 1982, The head protein D of bacterial virus X is related to eukaryotic chromosomal proteins, EMBO J. 1: 1559.PubMedGoogle Scholar
  380. Wollin, R., Ericksson, U., and Lindberg, A., 1981, Salmonellabacteriophage glycanases: Endorhamnosidase activity of bacteriophages P27, 9NA and KB1, J. Virol. 38: 1025.Google Scholar
  381. Wood, W., 1979, Bacteriophage T4 assembly and the morphogenesis of subcellular structure, Harvey Lect. 73: 203.PubMedGoogle Scholar
  382. Wood, W., 1980, Bacteriophage T4 morphogenesis as a model for assembly of subcellular structure, Q. Rev. Biol. 55: 353.CrossRefGoogle Scholar
  383. Wood, W., and Conley, M., 1979, Attachment of tail fibers in bacteriophage T4 assembly: Role of the phage whiskers, J. Mol. Biol. 127: 15.PubMedCrossRefGoogle Scholar
  384. Wood, W., and Crowther, R. A., 1983, Long tail fibers: Genes, proteins, assembly, and structure, in: Bacteriophage T4( C. Mathews, E. Kutter, G. Mosig, and P. Berget, eds.), pp. 259–269, ASM Publications, Washington.Google Scholar
  385. Wood, W., 1969, Attachment of tail fibers in bacteriophage T4 assembly: Some properties of the reaction in vitro, J. Mol. Biol. 39: 608.CrossRefGoogle Scholar
  386. Wood, W., and King, J., 1979, Genetic control of complex bacteriophage assembly, in: Comprehensive Virology, Vol. 13 (H. Fraenkel-Conrat and R. Wagner, eds.), pp. 581633, Plenum Press, New York.Google Scholar
  387. Wood, W., Edgar, R., King, J., Henninger, M., and Lielausis, I., 1968, Bacteriophage assembly, Fed. Proc. 27: 1160.PubMedGoogle Scholar
  388. Wood, W., Conley, M., Lyle, H., and Dickson, R., 1978, Attachment of tail fibers in bacteriophage T4 assembly. Purification, properties and site of action of the accessory protein coded by gene 63. Biol. Chem. 253: 2437.Google Scholar
  389. Wulff, D., and Rosenberg, M., 1983, Establishment of repressor synthesis, in: Lambda 1l( R. Hendrix, J. Roberts, F. Stahl, and R. Weisberg, eds.), pp. 52–73, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  390. Wurtz, M., Kistler, J., and Hohn, T., 1976, Surface structure of in vitroassembled bacteriophage lambda polyheads. Mol. Biol. 101: 39.CrossRefGoogle Scholar
  391. Wyckoff, E., and Casjens, S., 1985, Autoregulation of the bacteriophage P22 scaffolding protein gene, J. Virol. 53: 192.PubMedGoogle Scholar
  392. Yamaguchi, Y., and Yanagida, M., 1980, Head shell protein hoc alters the surface charge of bacteriophage T4, J. Mol. Biol. 141: 175.PubMedCrossRefGoogle Scholar
  393. Yamamoto, N., and Anderson, T., 1961, Genomic masking and recombination between serologically unrelated phages P22 and P221, Virology 14: 430.PubMedCrossRefGoogle Scholar
  394. Yamamoto, M., and Uchida, H., 1975, Organization and function of the tail of bacteriophage T4. Il. Structural control of the tail contraction, /. Mol. Biol. 92: 207.CrossRefGoogle Scholar
  395. Yanagida, M., 1977, Molecular organization of the shell of T-even bacteriophage head. I1. Arrangement of subunits in the head shells of giant phages, J. Mol. Biot. 109: 515.CrossRefGoogle Scholar
  396. Yanagida, M., and Ahmed-Zadeh, C., 1970, Determination of gene product positions in bacteriophage T4 by specific antibody association. Mol. Biol. 51:411.CrossRefGoogle Scholar
  397. Yanagida, M., Boy de la Tour, E., Alff-Steinberger, C., and Kellenberger, E., 1970, Studies on the morphopoeisis of the head of bacteriophage T-even. VIII. Multilayered polyheads. Mol. Biol. 50: 35.Google Scholar
  398. Youderian, P., 1978, Genetic analysis of the length of the tails of lambdoid bacteriophages, Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  399. Zorzopulos, J., and Kozloff, L., 1978, Identification of T4D bacteriophage gene product 12as the baseplate zinc metalloprotein, I. Biol. Chem. 253: 5593.Google Scholar
  400. Zweig, M., and Cummings, D., 1973, Cleavage of head and tail proteins during bacteriophage T5 assembly: Selective host involvement in the cleavage of a tail protein, J. Mol. Biol. 80: 505.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Sherwood Casjens
    • 1
  • Roger Hendrix
    • 2
  1. 1.Department of Cellular, Viral, and Molecular BiologyUniversity of Utah Medical CenterSalt Lake CityUSA
  2. 2.Department of Biological SciencesUniversity of PittsburghPittsburghUSA

Personalised recommendations