Advertisement

Temperate Bacteriophages of Bacillus subtilis

  • Stanley A. Zahler
Part of the The Viruses book series (VIRS)

Abstract

Bacillus subtilis is a gram-positive sporulating soil eubacterium. Like its gram-negative counterpart in molecular biology, Escherichia coli, it is prototrophic, easy to cultivate, and relatively harmless. Genetic exchange mechanisms are known for B. subtilis: DNA transformation, either “natural” (in strain 168 or its derivatives) or using protoplasts; generalized transduction, usually carried out by the very large bacteriophage PBS1; and specialized transduction. A number of useful plasmids have been described or constructed, although most of them originated in other gram-positive bacteria; shuttle vectors useful both in B. subtilis and in E. coli have been produced. A transposon, Tn917, can be used for shotgun mutagenesis; it has been engineered in ways that make it useful for producing transcriptional fusion insertions (with the E. coli β-galactosidase gene, for example; see Youngman et al., 1985). A useful system for studying phage infections in minicells has been developed (Reeve, 1977) Almost one-half as many genes have been identified in B. subtilis as in E. coli. The sporulation process is considered a useful analogue of developmental and cellular differentiation in higher organisms and has been subjected to extensive study. B. subtilis has been known for some time to make use of what was originally thought to be a unique mechanism of metabolic control: it produces multiple RNA polymerases, which differ from each other in the polypeptides they use as o-factor. Useful reviews of these and other aspects of B. subtilis molecular biology can be found in Dubnau (1982, 1985).

Keywords

Bacillus Subtilis Phage Particle Subtilis Strain Temperate Bacteriophage Thymidylate Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anaguchi, H., Fukui, S., and Kobayashi, Y., 1984a, Revised restriction maps of Bacillus subtilis bacteriophage 4)105 DNA, J. Bacteriol 159: 1080–1082.PubMedGoogle Scholar
  2. Anaguchi, H., Fukui, S, Shimotsu, H., Kawamura, F., Saito, H., and Kobayashi, Y., 1984b, Cloning of sporulation gene spolIC in Bacillus subtilis, J. Gen. Microbiol. 130: 757–760.PubMedGoogle Scholar
  3. Anderson, L. M., 1984, Molecular studies of the Bacillus subtilis defective bacteriophage, PBSX, Ph.D. Thesis, University of North Carolina, Chapel Hill.Google Scholar
  4. Anderson, L. M., and Bott, K. F., 1985, DNA packaging by the Bacillus subtilis defective bacteriophage PBSX, J. Virol. 54: 773–780.PubMedGoogle Scholar
  5. Anderson, L. M., Ruley, H. E., and Bott, K. F., 1982, Isolation of an autonomously replicating DNA fragment from the region of defective bacteriophage PBSX of Bacillus subtilis, J. Bacteriol 150: 1280–1286.PubMedGoogle Scholar
  6. Armentrout, R. W., and Rutberg, L., 1970, Mapping of prophage and mature deoxyribonucleic acid from temperate Bacillus bacteriophage 005 by marker rescue, J. Virol. 6: 760–767.PubMedGoogle Scholar
  7. Armentrout, R. W., and Rutberg, L., 1971, Heat induction of 43105 in Bacillus subtilis: Replication of the bacterial and bacteriophage genomes, J. Virol. 8: 455–468.PubMedGoogle Scholar
  8. Arwert, F., and Rutberg, L., 1974, Restriction and modification in Bacillus subtilis. Induction of a modifying activity in Bacillus subtilis 168, Mol. Gen. Genet. 133: 175–177PubMedCrossRefGoogle Scholar
  9. Ayaki, H., and Kobayashi, Y., 1984, Cloning of sporulation gene spolIG in Bacillus subtilis, J. Bacteriol 158: 507–512.PubMedGoogle Scholar
  10. Behrens, B., Pawlek, B., Morelli, G., and Trautner, T. A., 1983, Restriction and modification in Bacillus subtilis: Construction of hybrid X and SPP1 phages containing a DNA methyltransferase gene from B. subtilis phage SPR, Mol. Gen. Genet. 189: 10–16.CrossRefGoogle Scholar
  11. Birdsell, D. C., Hathaway, G. M., and Rutberg, L., 1969, Characterization of temperate Bacillus bacteriophage 4)105, J. Virol. 4: 264–270.PubMedGoogle Scholar
  12. Boice, L. B., 1969, Evidence that Bacillus subtilis bacteriophage SPO2 is temperate and heteroimmune to bacteriophage 4)105, J. Virol. 4: 47–49.PubMedCrossRefGoogle Scholar
  13. Boice, L., Eiserling, F. A., and Romig, W. R., 1969, Structure of Bacillus subtilis phage SPO2 and its DNA: Similarity of Bacillus subtilis phages SPO2, 4,105 and SPP1, Biochem. Biophys. Res. Commun. 34: 398–403.Google Scholar
  14. Bron, S., and Murray, K., 1975, Restriction and modification in B. subtilis. Nucleotide sequence recognized by restriction endonuclease R.BsuR from strain R, Mol. Gen. Genet. 143: 25–33.PubMedCrossRefGoogle Scholar
  15. Bron, S., Murray, K., and Trautner, T. A., 1975, Restriction and modification in B. subtilis. Purification and general properties of a restriction endonuclease from strain R, Mol. Gen. Genet. 143: 13–23.PubMedCrossRefGoogle Scholar
  16. Bugaichuk, U. D., Deadman, M., Errington, J., and Savva, D., 1984, Restriction enzyme analysis of Bacillus subtilis bacteriophage 4)105 DNA, J. Gen. Microbiol. 130: 2165–2167.PubMedGoogle Scholar
  17. Buhk, H.-J., Behrens, B., Tailor, R., Wilke, K., Prada, J. J., Gunthert, U., Noyer-Weidner, M., Jentsch, S., and Trautner, T. A., 1984, Restriction and modification in Bacillus subtilis: Nucleotide sequence, functional organization and product of the DNA methyltransferase gene of bacteriophage SPR, Gene 29: 51–61.PubMedCrossRefGoogle Scholar
  18. Bukhari, A. I., Ljungquist, E., De Bruijn, F., and Khatoon, H., 1977, The mechanism of bacteriophage Mu integration, in: DNA Insertion Elements, Plasmids, and Episomes ( A. I. Bukhari, J. A. Shapiro, and S. L. Adhya, eds.), pp. 249–261, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  19. Buxton, R. S., 1976, Prophage mutation causing heat inducibility of defective Bacillus subtilis bacteriophage PBSX, J. Virol. 20: 22–28.PubMedGoogle Scholar
  20. Buxton, R. S., 1980, Selection of Bacillus subtilis 168 mutants with deletions of the PBSX prophage, J. Gen. Virol. 46: 427–437.PubMedCrossRefGoogle Scholar
  21. Chin, T., Burger, M. M., and Glaser, L., 1966, Synthesis of teichoic acids. VI. The formation of multiple wall polymers in Bacillus subtilis W-23, Arch. Biochem. Biophys. 116: 358–367.PubMedCrossRefGoogle Scholar
  22. Chow, L. T., Boice, L., and Davidson, N., 1972, Map of the partial sequence homology between DNA molecules of Bacillus subtilis bacteriophages SPO2 and 6105, J. Mol. Biol. 68: 391–400.PubMedCrossRefGoogle Scholar
  23. Chow, L. T., and Davidson, N., 1973, Electron microscope study of the structures of the Bacillus subtilis prophages SPO2 and 6105, J. Mol. Biol. 75: 257–264.PubMedCrossRefGoogle Scholar
  24. Collins, J., and Hohn, B., 1978, Cosmids: A type of plasmid gene-cloning vector that is packageable in vitro in bacteriophage X heads, Proc. Natl. Acad. Sci. USA 75: 4242–4246.PubMedCrossRefGoogle Scholar
  25. Court, D., and Oppenheim, A. B., 1983, Phage lambdas accessory genes, in: Lambda ll ( R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 251–277, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  26. Cregg, J. M., and Ito, J., 1979, A physical map of the genome of temperate phage 63T, Gene 6: 199–219.PubMedCrossRefGoogle Scholar
  27. Cregg, J. M., Nguyen, A. H., and Ito, J., 1980, DNA modification induced during infection of Bacillus subtilis by phage 63T, Gene 12: 17–24.PubMedCrossRefGoogle Scholar
  28. Cully, D. F., and Garro, A. J., 1980, Expression of superinfection immunity to bacteriophage 6105 by Bacillus subtilis cells carrying a plasmid chimera of pUB110 and EcoRI fragment F of 6105 DNA, J. Virol. 34: 789–791.PubMedGoogle Scholar
  29. Cully, D. F., and Garro, A. J., 1985, Nucleotide sequence of the immunity region of Bacillus subtilis bacteriophage 6105: Identification of the repressor gene and its mRNA and protein products, Gene 38: 153–164.PubMedCrossRefGoogle Scholar
  30. Dean, D. H., Arnaud, M., and Halvorson, H. O., 1976a, Genetic evidence that Bacillus bacteriophage 6105 integrates by insertion. J. Virol. 20: 339–341.PubMedGoogle Scholar
  31. Dean, D. H., Orrego, J. C., Hutchison, K. W., and Halvorson, H. O., 1976b, New temperate bacteriophage for Bacillus subtilis, pl I, J. Virol. 20: 509–519.PubMedGoogle Scholar
  32. Dean, D. H., Fort, C. L., and Hoch, J. A., 1978a, Characterization of temperate phages of Bacillus subtilis, Curr. Microbiol. 1: 213–217.CrossRefGoogle Scholar
  33. Dean, D. H., Perkins, J. B., and Zarley, C. D., 1978b, Potential temperate bacteriophage molecular vehicle for Bacillus subtilis, in: Spores VII ( G. Chambliss and J. C. Vary, eds.), pp. 144–149, American Society for Microbiology, Washington.Google Scholar
  34. Dhaese, P., Hussey, C., and Van Montagu, M., 1984, Thermo-inducible gene expression in Bacillus subtilis using transcriptional regulatory elements from temperate phage 6105, Gene 32: 181–194.PubMedCrossRefGoogle Scholar
  35. Dhaese, P., Dobbelaere, M.-R., and Van Montagu, M., 1985a, The temperate B. subtilis phage 6105 genome contains at least two distinct regions encoding superinfection immunity, Mol. Gen. Genet. 200: 490–492.PubMedCrossRefGoogle Scholar
  36. Dhaese, P., Seurinch, J., De Smet, B., and Van Montagu, M., 1985b, Nucleotide sequence and mutational analysis of an immunity repressor gene from Bacillus subtilis temperate phage 5105, Nucleic Acids Res. 13: 5441–5455.PubMedCrossRefGoogle Scholar
  37. Dubnau, D. A. (ed.), 1982, Molecular Biology of the Bacilli, Vol. 1, Academic Press, New York.Google Scholar
  38. Dubnau, D. A. (ed.), 1985, Molecular Biology of the Bacilli, Vol. 2, Academic Press, New York.Google Scholar
  39. Duncan, C. H., Wilson, G. A., and Young, F. E., 1977, Transformation of Bacillus subtilis and Escherichia coli By a hybrid plasmid pCD1, Gene 1:153–167.Google Scholar
  40. Duncan, C. H., Wilson, G. A., and Young, F. E., 1978, Mechanism of integrating foreign DNA during transformation of Bacillus subtilis, Proc. Natl. Acad. Sci. USA 75: 3664–3668.PubMedCrossRefGoogle Scholar
  41. Ehrlich, S. D., Bursztyn-Pettegrew, I., Stroynowski, I., and Lederberg, J., 1976, Expression of the thymidylate synthetase gene of the Bacillus subtilis bacteriophage 43T in Escherichia coli, Proc. Natl. Acad. Sci. USA 73: 4145–4149.PubMedCrossRefGoogle Scholar
  42. Eiserling, F. A., 1964, Ph.D. Thesis, University of California, Los Angeles.Google Scholar
  43. Ellis, D. M., and Dean, D. H., 1985, Nucleotide sequence of the cohesive single-stranded ends of Bacillus subtilis temperate bacteriophage X105, J. Virol. 55: 513–515.Google Scholar
  44. Ellis, D. M., and Dean, D. H., 1986, Location of the Bacillus subtilis temperate bacterio-phage 4.105 attP attachment site, I. Virol. 58:223–224.Google Scholar
  45. Errington, J., 1984, Efficient Bacillus subtilis cloning system using bacteriophage vector 4.105J9, J. Gen. Microbiol. 130: 2615–2628.PubMedGoogle Scholar
  46. Estrela, A. I., De Lencastre, H., and Archer, L. J., 1986, Resistance of a Bacillus subtilis mutant to a group of temperate bacteriophages, J. Gen. Microbiol. 132: 411–415PubMedGoogle Scholar
  47. Femandes, R. M., De Lencastre, H., and Archer, L. J., 1983, Two newly isolated temperate phages of Bacillus subtilis, Broteria-Genetica 4 (79): 27–33.Google Scholar
  48. Fernandes, R. M., De Lencastre, H., and Archer, L. J., 1986, Three new temperate phages of Bacillus subtilis, J. Gen. Microbiol. 132: 661–668.PubMedGoogle Scholar
  49. Ferrari, E., and Hoch, J. A., 1982, System for complementation and dominance analyses in Bacillus, in: Molecular Cloning and Gene Regulation in Bacilli ( A. T. Ganesan, S. Chang, and J. A. Hoch, eds.), pp. 53–61, Academic Press, New York.Google Scholar
  50. Ferrari, E., and Hoch, J. A., 1983, A single copy, transducible system for complementation and dominance analyses in Bacillus subtilis, Mol. Gen. Genet. 189 :321–325.Google Scholar
  51. Fink, P. S., Korman, R. Z., Odebralski, J. M., and Zahler, S. A., 1981, Bacillus subtilis bacteriophage SPßc1 is a deletion mutant of SPß, Mol. Gen. Genet. 182:514–515.Google Scholar
  52. Fink, P. S., and Zahler, S. A., 1982a, Restriction fragment maps of the genome of Bacillus subtilis bacteriophage SP(3, Gene 19: 235–238.PubMedCrossRefGoogle Scholar
  53. Fink, P. S., and Zahler, S. A., 1982b, Specialized transduction of the ilvD-thyB-ilvA region mediated by Bacillus subtilis bacteriophage SPß, J. Bacteriol. 150: 1274–1279.Google Scholar
  54. Fink, P. S., and Zahler, S. A., 1983, SPßc2pilvA: Plaque-forming bacteriophages that trans- duce the Bacillus subtilis ilvA gene, Abstr. Am. Soc. Microbiol. 1983: 111.Google Scholar
  55. Flock, J. I., 1977, Deletion mutants of temperate Bacillus subtilis bacteriophage 4.105, Mol. Gen. Genet. 155: 241–247.PubMedCrossRefGoogle Scholar
  56. Flock, J.-I., 1978, Transfection with replicating DNA from the temperate Bacillus bacteriophage 4)105 and with T4-ligase treated 4)105 DNA: The importance in transfection of being longer than one genome-length, Mol. Gen. Genet. 163: 7–15.PubMedCrossRefGoogle Scholar
  57. Flock, J.-I., 1983, Cosduction: Transduction of Bacillus subtilis with phage 4)105 using a 4)105 cosplasmid, Mol. Gen. Genet. 189: 304–308.CrossRefGoogle Scholar
  58. Fujita, M., and Kobayashi, Y., 1985, Cloning of sporulation gene spolVC in Bacillus subtilis, Mol. Gen. Genet. 199: 471–475.PubMedCrossRefGoogle Scholar
  59. Fujita, Y., Fujita, T., Kawamura, F., and Saito, H., 1983, Efficient cloning of genes for utilization of D-gluconate of Bacillus subtilis in phage pl 1, Agric. Biol. Chem. 47: 1679–1682.CrossRefGoogle Scholar
  60. Fujita, Y., Nihashi, J.-I., and Fujita, T., 1986, The characterization and cloning of a gluconate (gnt) operon of Bacillus subtilis, J. Gen. Microbiol. 132: 161–169.PubMedGoogle Scholar
  61. Gardner, A., Odebralski, J., Zahler, S., Korman, R. Z., and Aronson, A. I., 1982, Glutamine synthetase subunit mixing and regulation in Bacillus subtilis partial diploids, J. Bacteriol. 149: 378–380.PubMedGoogle Scholar
  62. Garro, A. J., and Law, M. F., 1974, Relationship between lysogeny, spontaneous induction, and transformation efficiency in Bacillus subtilis, J. Bacteriol 120: 1256–1259.PubMedGoogle Scholar
  63. Glaser, L., Ionesco, H., and Schaeffer, P., 1966, Teichoic acids as components of a specific phage receptor in Bacillus subtilis, Biochim. Biophys. Acta 124: 415–417.PubMedCrossRefGoogle Scholar
  64. Graham, S., Sutton, S., Yoneda, Y., and Young, F. E., 1982, Correlation of the genetic map and the endonuclease site map of Bacillus subtilis bacteriophage SPO2, J. Virol. 42:131–134.Google Scholar
  65. Graham, S, Yoneda, Y., and Young, F. E., 1979, Isolation and characterization of viable deletion mutants of Bacillus subtilis bacteriophage SPO2, Gene 7: 69–77.PubMedCrossRefGoogle Scholar
  66. Graham, R. S., Young, F. E., and Wilson, G. A., 1977, Effect of site-specific endonuclease digestion on the thyP3 gene of bacteriophage 433T and the thyPl1 gene of bacteriophage p11, Gene 1: 169–180.PubMedCrossRefGoogle Scholar
  67. Greer, H., 1975, The kil gene of bacteriophage lambda, Virology 66: 589–604.PubMedCrossRefGoogle Scholar
  68. Gunthert, U., and Trautner, T. A., 1984, DNA methyltransferases of Bacillus subtilis and its bacteriophages, Curr. Top. Microbiol. Immunol. 108: 11–22.PubMedCrossRefGoogle Scholar
  69. Gunthert, U., Pawlek, B., Stutz, J., and Trautner, T. A., 1976, Restriction and modification in Bacillus subtilis: Inducibility of a DNA methylating activity in non-modifying cells, J. Virol. 20: 188–195.PubMedGoogle Scholar
  70. Haas, M., and Yoshikawa, H., 1969, Defective bacteriophage PBS H in Bacillus subtilis. I. Induction, purification, and physical properties of the bacteriophage and its deoxyribonucleic acid, J. Virol. 3: 248–260.PubMedGoogle Scholar
  71. Hemphill, H. E., and Whiteley, H. R., 1975, Bacteriophages of Bacillus subtilis, Bacteriol. Rev. 39: 257–315.PubMedGoogle Scholar
  72. Hemphill, H. E., Gage, I., Zahler, S. A., and Korman, R. Z., 1980, Prophage-mediated production of a bacteriocin-like substance by SP13 lysogens of Bacillus subtilis, Can. J. Microbiol. 26: 1328–1333.PubMedCrossRefGoogle Scholar
  73. Hirochika, H., Kobayashi, Y., Kawamura, F., and Saito, H., 1981, Cloning of sporulation gene spoOB of Bacillus subtihs and its genetic and biochemical analysis, I. Bacteriol 146: 494–505.Google Scholar
  74. Hirochika, H., Kobayashi, Y., Kawamura, F., and Saito, H., 1982, Construction and characterization of 41105 specialized transducing phages carrying sporulation genes spoOB and spoOF of Bacillus subtilis, J. Gen. Appl. Microbiol. 28: 225–229.CrossRefGoogle Scholar
  75. Iijima, T., Kawamura, F., Saito, H., and Ikeda, Y., 1980, A specialized transducing phage constructed from Bacillus subtilis phage 6105, Gene 9: 115–126.PubMedCrossRefGoogle Scholar
  76. Ikeucki, T., Kudoh, J., and Kurahashi, K., 1983, Cloning of sporulation genes spoOA and spoOC of Bacillus subtilis onto pl1 temperate bacteriophage, J. Bacteriol 154: 988991.Google Scholar
  77. Ikeuchi, T., Kudoh, J., and Kurahashi, K., 1985, Genetic analysis of spoOA and spoOC mutants of Bacillus subtilis with a (13105 prophage merodiploid system, J. Bacteriol. 163: 411–416.PubMedGoogle Scholar
  78. Imae, Y., and Fukasawa, T., 1970, Regional replication of the bacterial chromosome by derepression of prophage lambda, J. Mol. Biol. 54: 585–597.PubMedCrossRefGoogle Scholar
  79. Inselburg, J. W., Eremenko-Volpe, T., Greenwald, L., Meadow, W. L., and Marmur, J., 1969, Physical and genetic mapping of the SPO2 prophage on the chromosome of Bacillus subtilis, J. Virol. 3: 627–628.PubMedGoogle Scholar
  80. Ionesco, H., Ryter, A., and Schaeffer, P., 1964, Sur un bacteriophage heberge par is souche Marburg de Bacillus subtilis, Ann. Inst. Pasteur 107: 764–776.Google Scholar
  81. Jenkinson, H. F., and Deadman, M., 1984, Construction and characterization of recombinant phage 4)105 d(Cmrmet) for cloning in Bacillus subtilis, J. Gen. Microbiol. 130: 2155–2164.PubMedGoogle Scholar
  82. Jenkinson, H. F., and Mandelstam, J., 1983, Cloning of the Bacillus subtilis lys and spoIIIB genes in phage 4)105, J. Gen. Microbiol. 129: 2229–2240.PubMedGoogle Scholar
  83. Kawamura, F., Saito, H., and Ikeda, Y., 1979a, A method for construction of specialized transducing phage pl l of Bacillus subtilis, Gene 5: 87–91.PubMedCrossRefGoogle Scholar
  84. Kawamura, F., Saito, H., Ikeda, Y., and Ito, J., 1979b, Viable deletion mutants of Bacillus subtilis phage pl 1, J. Gen. Appl. Microbiol. 25: 223–226.CrossRefGoogle Scholar
  85. Kawamura, F., Saito, H., Hirochika, H., and Kobayashi, Y., 1980, Cloning of sporulation gene, spoOF, in Bacillus subtilis with pll phage vector, J. Gen. Appl. Microbiol. 26: 345–355.Google Scholar
  86. Kawamura, F., Mizukami, T., Anzai, H., and Saito, H., 198la, Frequent deletion of Bacillus subtilis chromosomal fragment in artificially constructed phage pl 1phisA+, FEBS Lett. 136: 244–246.Google Scholar
  87. Kawamura, F., Shimotsu, H., Saito, H., Hirochika, H., and Kobayashi, Y., 198 lb, Cloning of spoO genes with bacteriophage and plasmid vectors in Bacillus subtilis, in: Sporulation and Germination (H. S. Levinson, A. L. Sonenshein, and D. J. Tipper, eds.), American Society for Microbiology, Washington.Google Scholar
  88. Kiss, A., and Baldauf, F., 1983, Molecular cloning and expression in Escherichia coli of two modification methylase genes of Bacillus subtilis, Gene 21: 111–119.PubMedCrossRefGoogle Scholar
  89. Kroyer, J. M., Perkins, J. B., Rudinski, M. S., and Dean, D. H., 1980, Physical mapping of Bacillus subtilis phage p14 cloning vehicles: Heteroduplex and restriction enzyme analyses, Mol. Gen. Genet. 177: 511–517.PubMedCrossRefGoogle Scholar
  90. Kudoh, J., Ikeuchi, T., and Kurahashi, K., 1984, Identification of the sporulation gene spoOA product of Bacillus subtilis. Biochem. Biophys. Res. Commun. 122: 1104–1109.CrossRefGoogle Scholar
  91. Lampel, J. S., Ellis, D. M., and Dean, D. H., 1984, Reorienting and expanding the physical map of temperate Bacillus subtilis bacteriophage 4)105, J. Bacteriol. 160: 1178–1180.PubMedGoogle Scholar
  92. Lipsky, R. H., Rosenthal, R., and Zahler, S. A., 1981, Defective specialized SPß transducing bacteriophages of Bacillus subtilis that carry the sup-3 or sup-44 gene, J. Bacteriol. 148: 1012–1015PubMedGoogle Scholar
  93. Lopez-Diaz, I., Clarke, S., and Mandelstam, J., 1986, spolID operon of Bacillus subtilis: Cloning and sequence, J. Gen. Microbiol. 132: 341–354.Google Scholar
  94. Mackey, C. J., and Zahler, S. A., 1982, Insertion of bacteriophage SPß into the citF gene of Bacillus subtilis and specialized transduction of the ilvBC-leu genes, J. Bacteriol. 151: 1222–1229.PubMedGoogle Scholar
  95. Marrero, R., Chiafari, F. A., and Lovett, P. S., 1981, High-frequency elimination of SPO2 prophage from Bacillus subtilis by plasmid transformation, I. Virol. 39: 318–320.Google Scholar
  96. Marrero, R., and Lovett, P. S., 1980, Transductional selection of cloned bacteriophage 4)105 and SPO2 deoxyribonucleic acids in Bacillus subtilis, J. Bacteriol. 143: 879–886.PubMedGoogle Scholar
  97. Marrero, R., and Lovett, P. S., 1982, Interference of plasmid pCM194 with lysogeny of bacteriophage SPO2 in Bacillus subtilis, J. Bacteriol. 152: 284–290.PubMedGoogle Scholar
  98. Marrero, R., and Yasbin, R. E., 1986, Evidence for circular permutation of the prophage genome of Bacillus subtilis bacteriophage 4)105, J. Viral. 57: 1145–1148.Google Scholar
  99. Marrero, R., Young, F. E., and Yasbin, R. E., 1984, Characterization of interspecific plasmid transfer mediated by Bacillus subtilis temperate bacteriophage SPO2, J. Bacteriol. 160: 458–461.PubMedGoogle Scholar
  100. Mele, J., 1972, Biological characterization and prophage mapping of a lysogenizing bacterio- phage for Bacillus subtilis, Ph.D. Thesis, University of Massachusetts, Amherst.Google Scholar
  101. Montenegro, M. A., Pawlek, B., Behrens, B., and Trautner, T. A., 1983, Restriction and modification in Bacillus subtilis: Expression of the cloned methyltransferase gene from B. subtilis phage SPR in E. coli and B. subtilis, Mol. Gen. Genet. 189:17–20.Google Scholar
  102. Neuhard, J., Price, A. R., Schack, L., and Thomassen, E., 1978, Two thymidylate synthetase in Bacillus subtilis, Proc. Natl. Acad. Sci. USA 75: 1194–1198.PubMedCrossRefGoogle Scholar
  103. Nomura, S., Yamane, K., Masuda, T., Kawamura, F., Mizukami, T., Saito, H., Takatsuki, A., Yamasaki, M., Tamura, G., and Mania, B., 1979, Construction of transducing phage pl l containing a-amylase structural gene of Bacillus subtilis, Agric. Biol. Chem. 43: 2637–2638.CrossRefGoogle Scholar
  104. Noyer-Weidner, M., Pawlek, B., Jentsch, S., Gunthert, U., and Trautner, T. A., 1981, Restriction and modification in Bacillus subtilis: Gene coding for a BsuR-specific modification methyltransferase in the temperate bacteriophage 43T, J. Viral. 38: 1077–1080.Google Scholar
  105. Noyer-Weidner, M., Jentsch, S., Pawlek, B., Gunthert, U., and Trautner, T. A., 1983, Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SP13, 43T, and p11, J. Viral. 46: 446–453.Google Scholar
  106. Noyer-Weidner, M., Jentsch, S., Kupsch, J., Berbauer, M., and Trautner, T. A., 1985, DNA methyltransferase genes of Bacillus subtilis phages: Structural relatedness and gene expression, Gene 35: 143–150.PubMedCrossRefGoogle Scholar
  107. Odebralski, J. M., and Zahler, S. A., 1982, Specialized transduction of the kauA and citK genes of Bacillus subtilis by bacteriophage 4)3T, Abstr. Am. Soc. Microbial. 1982:130.Google Scholar
  108. Okamoto, K., Mudd, J. A., Mangan, J., Huang, W. M., Subbaiah, T. V., and Marmur, J., 1968a, Properties of the defective phage of Bacillus subtilis, J. Mol. Biol. 34: 413–428.PubMedCrossRefGoogle Scholar
  109. Okamoto, K., Mudd, J. A., and Marmur, J., 1968b, Conversion of Bacillus subtilis DNA to phage DNA following mitomycin C induction, J. Mol. Biol. 34: 429–437.PubMedCrossRefGoogle Scholar
  110. Okubo, S., and Romig, W. R., 1965, Comparison of ultraviolet sensitivity of Bacillus subtilis bacteriophage SPO2 and its infectious DNA, J. Mol. Biol. 14: 130–142.Google Scholar
  111. Ordal, G. W., Nettleton, D. O., and Hoch, J. A., 1983, Genetics of Bacillus subtilis chemotaxis: Isolation and mapping of mutations and cloning of chemotaxis genes, J. Bacteriol. 154: 1088–1097.PubMedGoogle Scholar
  112. Osburne, M. S., and Sonenshein, A. L., 1980, Inhibition by lipiarmycin of bacteriophage growth in Bacillus subtilis, J. Viral. 33: 945–953.Google Scholar
  113. Osburne, M. S., Craig, R. J., and Rothstein, D. M., 1985, Thermoinducible transcription system for Bacillus subtilis that uses control elements from temperate phage X105, J. Bacterial. 163: 1101–1108.Google Scholar
  114. Parker, A. P., and Dean, D. H., 1986, Temperate Bacillus bacteriophage SP16 genome is circularly permuted and terminally redundant, J. Bacterial. 167: 719–721.Google Scholar
  115. Perkins, J. B., Zarley, C. D., and Dean, D. H., 1978, Restriction endonucicase mapping of 4105 and closely related temperate Bacillus subtilis phages p10 and p14, J. Viral. 28: 403–407.Google Scholar
  116. Peterson, A. M., and Rutberg, L., 1969, Linked transformation of bacterial and prophage markers in Bacillus subtilis 168 lysogenic for bacteriophage 6105, J. Bacterial. 98: 874877.Google Scholar
  117. Piggot, P. J., and Hoch, J. A., 1985, Revised genetic linkage map of Bacillus subtilis, Microbial. Rev. 49: 158–179.Google Scholar
  118. Raden, B., and Rutberg, L., 1984, Nucleotide sequence of the temperate Bacillus subtilis bacteriophage SPO2 DNA polymerase gene L, J. Viral. 52: 9–15.Google Scholar
  119. Reeve, J. N., 1977, Bacteriophage infection of minicells. A general method for identification of in vivo bacteriophage directed polypeptide biosynthesis, Mol. Gen. Genet. 158: 7379.CrossRefGoogle Scholar
  120. Rettenmeier, C. W., Gingell, B., and Hemphill, H. E., 1979, The role of temperate bacteriophage SP(3 in prophage-mediated interference in Bacillus subtilis, Can. J. Microbial. 25: 1345–1351.CrossRefGoogle Scholar
  121. Romig, W. R., 1968, Infectivity of Bacillus subtilis bacteriophage deoxyribonucleic acids extracted from mature particles and from lysogenic hosts, Bacterial. Rev. 32: 349–357.Google Scholar
  122. Rosenthal, R., Toye, P. A., Korman, R. Z., and Zahler, S. A., 1979, The prophage of SP(3c2dcitK1, a defective specialized transducing phage of Bacillus subtilis, Genetics 92: 721–739.PubMedGoogle Scholar
  123. Rowe, D. B., Iismaa, T. P., and Wake, R. G., 1986, Nonrandom cosmid cloning and prophage SPf3 homology near the replication terminus of the Bacillus subtilis chromosome, I. Bacterial. 167: 379–382.Google Scholar
  124. Rudinski, M. S., and Dean, D. H., 1978, Evolutionary considerations of related B. subtilis temperate phages 45105, p14, p10 and p6 as revealed by heteroduplex analysis, Virology 99: 57–65.CrossRefGoogle Scholar
  125. Rutberg, L., 1969, Mapping of a temperate bacteriophage active on Bacillus subtilis, I. Viral. 3: 38–44.Google Scholar
  126. Rutberg, L., 1973, Heat induction of prophage 4)105 in Bacillus subtilis: Bacteriophage-induced bidirectional replication of the bacterial chromosome, J. Viral. 12: 9–12.Google Scholar
  127. Rutberg, L., 1982, Temperate bacteriophages of Bacillus subtilis, in: Molecular Biology of the Bacilli ( D. A. Dubnau, ed.), pp. 247–268, Academic Press, New York.Google Scholar
  128. Rutberg, L., Armentrout, R. W., and Jonasson, J., 1972, Unrelatedness of temperate Bacillus subtilis bacteriophages SPO2 and X105, J. Virol. 9: 732–737.PubMedGoogle Scholar
  129. Rutberg, L., Raden, B., and Flock, J.-I., 1981, Cloning and expression of bacteriophage SPO2 DNA polymerase gene L in Bacillus subtilis, using the Staphylococcus aureus plasmid pC194, J. Viral. 39: 407–412.Google Scholar
  130. Rutberg, L., and Rutberg, B., 1970, Characterization of infectious deoxyribonucleic acid from temperate Bacillus subtilis bacteriophage 6105, I. Viral. 5: 604–608.Google Scholar
  131. Sargent, M. G., Davies, S., and Bennett, M. F., 1985, Potentiation of a nucleolytic activity in Bacillus subtilis, J. Gen. Microbial. 131: 2795–2804.Google Scholar
  132. Savva, D., and Mandelstam, J., 1984, Cloning of the Bacillus subtilis spoliA and spoVA loci in phage 4)105DI:It, J. Gen. Microbial. 130: 2137–2145.Google Scholar
  133. Scher, B. M., Dean, D. H., and Garro, A. J., 1977, Fragmentation of Bacillus bacteriophage 4)105 DNA by restriction endonuclease EcoRI: Evidence for complementary single-stranded DNA in the cohesive ends of the molecule, J. Virol. 23: 377–383.Google Scholar
  134. Scher, B. M., Law, M. F., and Garro, A. J., 1978, Correlated genetic and EcoRI cleavage map of Bacillus subtilis bacteriophage X105 DNA, J. Virol. 28: 395–402.PubMedGoogle Scholar
  135. Schneider, A.-M., and Anagnostopoulos, C., 1983, Bacillus subtilis strains carrying two non-tandem duplications of the trpE-ilvA and the purB-tre regions of the chromosome, J. Gen. Microbiol. 129: 687–701.Google Scholar
  136. Seaman, E., Tarmy, E., and Marmur, J., 1964, Inducible phages of Bacillus subtilis, Biochemistry 3: 607–613.PubMedCrossRefGoogle Scholar
  137. Shapiro, J. M., Dean, D. H., and Halvorson, H. O., 1974, Low-frequency specialized transduction with Bacillus subtilis bacteriophage 4)105, Virology 62: 393–403.PubMedCrossRefGoogle Scholar
  138. Shinomiya, S., Yamane, K., Mizukami, T., Kawamura, F., and Saito, H., 1981, Cloning of thermostable et-amylase gene using Bacillus subtilis phage p 1 as a vector, Agric. Biol. Chem. 45: 1733–1735.CrossRefGoogle Scholar
  139. Siegel, E. C., and Marmur, J., 1969, Temperature-sensitive induction of bacteriophage in Bacillus subtilis 168, J. Virol. 4: 610–618.PubMedGoogle Scholar
  140. Smith, I., and Smith, H., 1973, Location of the SPO2 attachment site and the bryamycin resistance marker on the Bacillus subtilis chromosome, J. Bacteriol. 114: 1138–1142.PubMedGoogle Scholar
  141. Spancake, G. A., and Hemphill, H. E., 1985, Deletion mutants of Bacillus subtilis bacteriophage SPß, J. Virol. 55: 39–44.Google Scholar
  142. Spancake, G. A., Hemphill, H. E., and Fink, P. S., 1984, Genome organization of SPß c2 bacteriophage carrying the thyP3 gene, J. Bacteriol. 157: 428–434.PubMedGoogle Scholar
  143. Steensma, H. Y., 198la, Adsorption of defective phage PBSZ1 to Bacillus subtilis 168 Wt, J. Gen. Virol. 52: 93–101.Google Scholar
  144. Steensma, H. Y., 198 lb, Effect of defective phages on the cell membrane of Bacillus subtilis and partial characterization of a phage protein involved in killing, J. Gen. Virol. 56:275286.Google Scholar
  145. Steensma, H. Y., Robertson, L. A., and Van Elsas, J. D., 1978, The occurrence and taxonomic value of PBS X-like defective phages in the genus Bacillus, Antonie van Leeuwenhock 44: 353–366.CrossRefGoogle Scholar
  146. Stickler, D. J., Tucker, R. G., and Day, D., 1965, Bacteriophage-like particles released from Bacillus subtilis after induction with hydrogen peroxide, Virology 26: 142–145.PubMedCrossRefGoogle Scholar
  147. Stroynowski, I. T., 1981a, Distribution of bacteriophage 43T homologous deoxyribonucleic acid sequences in Bacillus subtilis 168, related bacteriophages, and other Bacillus species, J. Bacteriol. 148:91–100.Google Scholar
  148. Stroynowski, I. T., 1981b, Integration of the bacteriophage 43T-coded thymidylate synthetase gene into the Bacillus subtilis chromosome, J. Bacteriol. 148: 101–108.PubMedGoogle Scholar
  149. Thome, C. B., and Mele, J., 1974, Prophage interference in Bacillus subtilis 168, Microbial Genet. Bull. 36: 27–29.Google Scholar
  150. Thurm, P., and Garro, A. J., 1975a, Bacteriophage-specific protein synthesis during induction of the defective Bacillus subtilis bacteriophage PBSX, J. Virol. 16: 179–183.PubMedGoogle Scholar
  151. Thurm, P., and Garro, A. J., 1975b, Isolation and characterization of prophage mutants of the defective Bacillus subtilis bacteriophage PBSX, J. Virol. 16: 184–191.Google Scholar
  152. Tran-Betcke, A., Behrens, B., Noyer-Weidner, M., and Trautner, T. A., 1986, DNA methyltransferase genes of Bacillus subtilis phages: Comparison of their nucleotide sequences, Gene 42: 89–96.PubMedCrossRefGoogle Scholar
  153. Trautner, T. A., Pawlek, B., Gunthert, U., Canosi, U., Jentsch, S., and Freund, M., 1980, Restriction and modification in Bacillus subtilis: Identification of a gene in the temperate phage SPIS coding for a BsuR specific modification methyltransferase, Mol. Gen. Genet. 180: 361–367.PubMedCrossRefGoogle Scholar
  154. Tucker, R. G., 1969, Acquisition of thymydylate synthetase activity by a thymine-requiring mutant of Bacillus subtilis following infection by the temperate phage (1)3, J. Gen. Virol. 4: 489–504.PubMedCrossRefGoogle Scholar
  155. Vandeyar, M. A., Mackey, C. J., Lipsky, R. H., and Zahler, S. A., 1986, The ilvBC-leu operon of Bacillus subtilis, in: Bacillus Molecular Genetics and Biotechnology Applications ( A. T. Ganesan and J. A. Hoch, eds.), pp. 295–306, Academic Press, New York.Google Scholar
  156. Warner, F. D., Kitos, G. A., Romano, M. P., and Hemphill, H. E., 1977, Characterization of SPß: A temperate bacteriophage from Bacillus subtilis 168M, Can. I. Microbiol. 23: 45–51.CrossRefGoogle Scholar
  157. Weiner, M., 1986, Characterization of bacteriophage H2, Ph.D. Thesis, Cornell University, Ithaca, NY.Google Scholar
  158. Weiss, A. S., Smith, M. T., Iismaa, T. P., and Wake, R. G., 1983, Cloning DNA from the replication terminus region of the Bacillus subtilis chromosome, Gene 24: 83–91.PubMedCrossRefGoogle Scholar
  159. Williams, M. T., and Young, F. E., 1977, Temperate Bacillus subtilis bacteriophage blx3T: Chromosomal attachment site and comparison with temperate bacteriophages 4105 and SPO2, J. Virol. 21: 522–529.PubMedGoogle Scholar
  160. Wilson, G. A., Williams, M. T., Baney, H. W., and Young, F. E., 1974, Characterization of temperate bacteriophages of Bacillus subtilis by the restriction endonuclease EcoRI: Evidence for three different temperate bacteriophages, J. Virol. 14: 1013–1016.PubMedGoogle Scholar
  161. Wulff, D. L., and Rosenberg, M., 1983, Establishment of repressor synthesis, in: Lambda II ( R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 53–73, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  162. Yamada, H., Anaguchi, H., and Kobayashi, Y., 1983, Cloning of the sporulation gene spoVE in Bacillus subtilis, J. Gen. Appl. Microbiol. 29: 477–486.CrossRefGoogle Scholar
  163. Yamazaki, H., Ohmura, K., Nakayama, A., Takeichi, Y., Otozai, K., Yamasaki, M., Tamura, G., and Yamane, K., 1983, a-Amylase genes (amyR2 and amyE+(from an cx-amylasehyperproducing Bacillus subtilis strain: Molecular cloning and nucleotide sequences, J. Bacteriol. 156: 327–337.Google Scholar
  164. Yarmolinsky, M., 1982, Bacteriophage P1, in: Genetic Maps, Vol. 2 ( S. J. Brien, ed.), pp. 34–43, National Cancer Institute, Frederick, MD.Google Scholar
  165. Yasbin, R. E., Wilson, G. A., and Young, F. E., 1973, Transformation and transfection in lysogenic strains of Bacillus subtilis 168, J. Bacteriol. 113: 540–548.Google Scholar
  166. Yasbin, R. E., Wilson, G. A., and Young, F. E., 1975a, Transformation and transfection in lysogenic strains of Bacillus subtilis: Evidence for selective induction of prophage in competent cells, J. Bacteriol. 121: 296–304.PubMedGoogle Scholar
  167. Yasbin, R. E., Wilson, G. A., and Young, F. E., 1975b, Effect of lysogeny on transfection and transfection enhancement in Bacillus subtilis, J. Bacteriol. 121: 305–312.PubMedGoogle Scholar
  168. Yasbin, R. W., Maino, V. C., and Young, F. E., 1976, Bacteriophage resistance in Bacillus subtilis 168, W23 and interstrain transformants, J. Bacteriol. 125: 1120–1126.PubMedGoogle Scholar
  169. Yasbin, R. E., Fields, P. I., and Andersen, B. J., 1980, Properties of Bacillus subtilis 168 derivatives freed of their natural prophages, Gene 12: 155–159.PubMedCrossRefGoogle Scholar
  170. Yasbin, R. E., and Young, F. E., 1972, The influence of temperate bacteriophage 4.105 on transformation and transfection in Bacillus subtilis, Biochem. Biophys. Res. Commun. 47: 365–371.PubMedCrossRefGoogle Scholar
  171. Yasunaka, A., Tsukamato, H., Okubo, S., and Horiuchi, T., 1970, Isolation and properties of suppressor-sensitive mutants of Bacillus subtilis bacteriophage SPO2, J. Virol. 5: 819821.Google Scholar
  172. Yoneda, Y., Graham, S., and Young, F. E., 1979a, Cloning of a foreign gene coding for etamylase in Bacillus subtilis, Biochem. Biophys. Res. Commun. 91: 1556–1564.PubMedCrossRefGoogle Scholar
  173. Yoneda, Y., Graham, S., and Young, F. E., 1979b, Restriction-fragment map of the temperate Bacillus subtilis bacteriophage SPO2, Gene 7: 51–68.PubMedCrossRefGoogle Scholar
  174. Youngman, P. J., Suber, P., Perkins, J. B., Sandman, K., Igo, M., and Losick, R., 1985, New ways to study developmental genes in spore-forming bacteria, Science 228: 285291.Google Scholar
  175. Zahler, S. A., 1982, Specialized transduction in Bacillus subtilis, in: Molecular Biology of the Bacilli ( D. A. Dubnau, ed.), Vol. 1, pp. 269–305, Academic Press, New York.Google Scholar
  176. Zahler, S. A., Korman, R. Z., Rosenthal, R., and Hemphill, H. E., 1977, Bacillus subtilis bacteriophage SPß: Localization of the prophage attachment site, and specialized transduction, J. Bacteriol. 129: 556–558.Google Scholar
  177. Zahler, S. A., Korman, R. Z., Odebralski, J. M., Fink, P. S., Mackey, C. J., Poutre, C. G., Lipsky, R. H., and Youngman, P. J., 1982, Genetic manipulations with phage SPI3, in: Molecular Cloning and Gene Regulation in Bacillus ( J. A. Hoch, S. Chang, and A. T. Ganesan, eds.), pp. 41–50, Academic Press, New York.Google Scholar
  178. Zahler, S. A., Korman, R. Z., Thomas, C., and Odebralski, J. M., 1987a, Temperate bacteriophages of Bacillus amyloliquefaciens, J. Gen. Microbiol. 133: 2933–2935.Google Scholar
  179. Zahler, S. A., Korman, R. Z., Thomas, C., Fink, P. S., Weiner, M. P., and Odebralski, J. M., 1987b, H2, a temperate bacteriophage isolated from Bacillus amyloliquefaciens strain H, J. Gen. Microbiol. 133: 2937–2944.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Stanley A. Zahler
    • 1
  1. 1.Section of Genetics and Development, Division of Biological SciencesCornell UniversityIthacaUSA

Personalised recommendations