Advertisement

Viruses of Archaebacteria

  • Wolfram Zillig
  • Wolf-Dieter Reiter
  • Peter Palm
  • Felix Gropp
  • Horst Neumann
  • Michael Rettenberger
Part of the The Viruses book series (VIRS)

Abstract

The archaebacteria constitute the third distinct urkingdom of life, beside eubacteria and eucytes (eukaryotic nucleus and cytoplasm) (Woese and Fox, 1977; Woese et al., 1978; Fox et al., 1980). They exhibit a characteristic mosaic of features, some of them—e.g., their lipids—unique to the group (for review see Langworthy, 1985); others—e.g., the organization of genes in operons (Konheiser et al., 1984; Hamilton and Reeve, 1985; Reeve et al., 1986; Reiter et al., 1987a) and the existence of ribosome-binding sites in mRNAs (Reiter et al., 1987a, and literature cited therein)—of eubacterial quality; and a third type—e.g., the ADP ribosylatability of their EFIIs by diphtheria toxin (Kessel and Klink, 1982)—of eukaryotic quality. Most interestingly, features of a fourth group—e.g., the structures of 5S rRNAs, initiator tRNAs, and DNA-dependent RNA polymerases and the occurrence of introns in tRNA genes—are highly divergent in different archaebacteria (Zillig et al., 1985a). Phylogenetically, the archaebacterial kingdom is deeply divided into three major branches (Woese and Olsen, 1986; Klenk et al., 1986): (1) the methanogens (Methanococcales, Methanobacteriales, and Methanomicrobiales) (for review see Whitman, 1985) plus extreme halophiles (Halobacteriales and Thermoplasmales) (for review see Kushner, 1985); (2) the sulfur-dependent extremely thermophilic Thermococcales (Woese and Olsen, 1986; Zillig et al., 1987); and (3) the sulfur-dependent, extremely thermophilic Thermoproteales plus Sulfolobales (for review see Stetter and Zillig, 1985) (Fig. 1).

Keywords

Burst Size Phage Genome Lytic Cycle Tail Fiber Extreme Halophile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertani, G., and Baresi, L., 1986, Looking for gene transfer mechanism in methanogenic bacteria, in: Archaebacteria ’85 (O. Kandler and W Zillig, eds.), Gustav Fischer Verlag, Stuttgart.Google Scholar
  2. Bradley, D. E., 1967, Ultrastructure of bacteriophages and bacteriocins, Bacteriol. Rev. 31:230–314.PubMedGoogle Scholar
  3. Chant, J., Hui, I., de Jong-Wong, D., Shimmin, L., and Dennis, P. P., 1986, The protein synthesizing machinery of the archaebacterium Halobacterium cutirubrum: Molecular characterization, Syst. Appl. Microbiol. 7:106–114.CrossRefGoogle Scholar
  4. Conti, M., and Lovisolo, O., 1971, Tubular structures associated with maize rough dwarf virus particles in crude extracts: Electron microscopy study, J. Gen. Virol. 13:173–176.PubMedCrossRefGoogle Scholar
  5. Daniels, L. L., and Wais, A. C., 1984, Restriction and modification of halophage S45 in Halobacterium, Curr. Microbiol. 10:133–136.CrossRefGoogle Scholar
  6. Fiala, G., and Stetter, K. O., 1986, Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C, Arch. Microbiol. 145:56–61.CrossRefGoogle Scholar
  7. Fiala, G., Stetter, K. O., Jannasch, H. W., Langworthy, T. A., and Madon, J., 1986, Staphylothermus marinus sp. nov. represents a novel genus of extremely thermophilic submarine heterotrophic archaebacteria growing up to 98°C, Syst. Appl. Microbiol. 8:106–113.CrossRefGoogle Scholar
  8. Forterre, P., Elie, C., and Kohiyama, M., 1984, Aphidicolin inhibits growth and DNA synthesis in halophilic archaebacteria, J. Bacteriol. 159:800–802.PubMedGoogle Scholar
  9. Forterre, P., Nadal, M., Elie, C., Mirambeau, G., Jaxel, C., and Duguet, M., 1986, Mechanisms of DNA synthesis and topoisomerisation in archaebacteria—reverse gyration in vitro and in vivo, Syst. Appl. Microbiol. 7:67–71.CrossRefGoogle Scholar
  10. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zahlen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R., 1980, The phylogeny of prokaryotes, Science 209:457–463.PubMedCrossRefGoogle Scholar
  11. Hamilton, P. T., and Reeve, J. N., 1985, Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii, Mol. Gen. Genet. 200:47–59.PubMedCrossRefGoogle Scholar
  12. Hitchborn, J. H., and Hills, G. J., 1968, A study of tubes produced in plants infected with a strain of turnip yellow mosaic virus, Virology 35:50–70.PubMedCrossRefGoogle Scholar
  13. Ikeda, H., and Tomizawa, J., 1968, Prophage Pl, an extrachromosomal replication unit, Cold Spring Harbor Symp. Quant. Biol. 33:791–798.PubMedCrossRefGoogle Scholar
  14. Jackson, E. N., Jackson, D. A., and Deans, R. J., 1978, EcoRI analysis of bacteriophage P22 DNA packaging, J. Mol. Biol. 118:365–388.PubMedCrossRefGoogle Scholar
  15. Janekovic, D., Wunderl, S., Holz, I., Zillig, W., Gierl, A., and Neumann, H., 1983, TTV1, TTV2 and TTV3, a family of viruses of the extremely thermophilic, anaerobic, sulfur reducing archaebacterium Thermoproteus tenax, Mol. Gen. Genet. 192:39–45.CrossRefGoogle Scholar
  16. Kessel, M., and Klink, F., 1982, Identification and comparison of eighteen archaebacteria by means of the diptheria toxin reaction, Zbl. Bakteriol. Hyg. I. Abt. Orig. C3:140–148.Google Scholar
  17. Klenk, H.-P., Haas, B., Schwass, V., and Zillig, W., 1986, Hybridization homology—a new parameter for the analysis of phylogenetic relations, demonstrated with the urkingdom of the archaebacteria, J. Mol. Evol. 24:167–173.CrossRefGoogle Scholar
  18. Kohiyama, M., Nakayama, M., and Mahrez, K. B., 1986, DNA polymerase and primasereverse transcriptase from Halobacterium halobium, Syst. Appl. Microbiol. 7:79–82.CrossRefGoogle Scholar
  19. Konheiser, U., Pasti, G., Bollschweiler, C., and Klein, A., 1984, Physical mapping of genes coding for two subunits of methyl CoM reductase component C of Methanococcus voltae, Mol. Gen. Genet. 198:146–152.CrossRefGoogle Scholar
  20. Kushner, D. J., 1985, The halobacteriaceae, in: The Bacteria (I. C. Gunsalus, J. R. Sokatch, L. N. Omston, C. R. Woese, and R. S. Wolfe, eds.), Vol. VIII, pp. 171–214, Academic Press, Orlando, FL.Google Scholar
  21. Langworthy, T. A., 1985, Lipids of archaebacteria, in: The Bacteria (I. C. Gunsalus, J. R. Sokatch, L. N. Ornston, C. R. Woese, and R. S. Wolfe, eds.), Vol. VIII, pp. 459–497, Academic Press, Orlando, FL.Google Scholar
  22. Martelli, G. P., and Russo, M., 1977, Plant virus inclusion bodies, in: Advances in Virus Research (M. A. Lauffer, F. B. Bang, K. Maramorosch, and K. M. Smith, eds.), Vol. 21, pp. 175–266, Academic Press, New York.Google Scholar
  23. Martin, A., Yeats, S., Janekovic, D., Reiter, W.-D., Aicher, W., and Zillig, W., 1984, SAV 1, a temperate u.v.-inducible virus-like particle from the archaebacterium Sulfolobus acidocaldarius isolate B12, EMBO J. 3:2165–2168.PubMedGoogle Scholar
  24. Morgan, H. W., and Daniel, R. M., 1982, Isolation of a new species of sulphur reducing extreme thermophile, in: Proceedings of the XIII International Congress of Microbiology, Boston, August 1982.Google Scholar
  25. Nadal, M., Mirambeau, G., Forterre, P., Reiter, W.-D., and Duguet, M., 1986, Positively supercoiled DNA in a virus-like particle of an archaebacterium, Nature 321:256–258.CrossRefGoogle Scholar
  26. Pauling, C., 1982, Bacteriophages of Halobacterium halobium: Isolation from fermented fish sauce and primary characterization, Can. J. Microbiol. 28:916–921.PubMedCrossRefGoogle Scholar
  27. Pfeifer, F., 1987, Genetics of halobacteria, in: Halophilic Bacteria (F. Rodriguez-Valera, ed.), pp. 105–133, CRC Press, Boca Raton, FL.Google Scholar
  28. Pfeifer, F., Friedman, J., Boyer, H. W., and Betlach, M., 1984, Characterization of insertions affecting the expression of the bacterio-opsin gene in Halobacterium halobium, Nucleic Acids Res., 12:2489–2497.PubMedCrossRefGoogle Scholar
  29. Pflug, H. D., 1982, Early diversification of life in the archaean, Zbl. Bakteriol. Hyg. I. Abt. Orig. C3:53–64.Google Scholar
  30. Reanney, D. C., and Ackermann, H.-W., 1982, Comparative biology and evolution of bacteriophages, in: Advances in Virus Research (M. A. Lauffer, F. B. Bang, K. Maramorosch, and K. M. Smith, eds.), Vol. 27, pp. 205–280, Academic Press, New York.Google Scholar
  31. Reeve, J. N., Hamilton, P. T., Beckler, G. S., Morris, C. J., and Clarke, C. H., 1986, Structure of methanogen genes, Syst. Appl. Microbiol. 7:5–12.CrossRefGoogle Scholar
  32. Reiter, W.-D., 1985, Das virusartige Partikel SSV 1 von Sulfolobus solfataricus Isolat B12: UV-Induktion, Reinigung und Charakterisierung, Diploma thesis, Eberhard-Karls-Universität, Tübingen, FRG.Google Scholar
  33. Reiter, W.-D., Palm, P., Henschen, A., Lottspeich, F., Zillig, W., and Grampp, B., 1987a, Identification and characterization of the genes encoding three structural proteins of the Sulfolobus virus-like particle SSV1, Mol. Gen. Genet. (in press).Google Scholar
  34. Reiter, W.-D., Zillig, W., and Palm, P., 1987b, Archaebacterial viruses, in: Advances in Virus Research (K. Maramorosch, F. Murphy, and A. Shatkin, eds.), Academic Press, New York in press).Google Scholar
  35. Reiter, W.-D., Palm, P., Yeats, S., and Zillig, W., 1987c, Gene expression in archaebacteria: Physical mapping of constitutive and UV-inducible transcripts from the Sulfolobus virus-like particle SSV1, Mol. Gen. Genet. 209:270–275.CrossRefGoogle Scholar
  36. Reiter, W.-D., Palm, P., Voos, W., Kaniecki, J., Grampp, B., Schulz, W., and Zillig, W., 1987d, Putative promoter elements for the ribosomal RNA genes of the thermoacidophilic archaebacterium Sulfolobus sp. strain B12, Nucl. Acids Res. 15:5581–5595.CrossRefGoogle Scholar
  37. Reiter, W.-D., Palm, P., and Zillig, W., 1988, Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters, Nucl. Acids Res. 16:1–19.PubMedCrossRefGoogle Scholar
  38. Rohrmann, G. F., Cheney, R., and Pauling, C., 1983, Bacteriophages of Halobacterium halobium: Virion DNAs and proteins, Can. J. Microbiol. 29:627–629.PubMedCrossRefGoogle Scholar
  39. Schinzel, R., 1985, DNA-polymerisierende, DNA-restringierende und DNA-modifizierende Aktivitäten in Halobacterium halobium, Ph.D. Thesis, Bayerische Julius-MaximiliansUniversität, Würzburg, FRG.Google Scholar
  40. Schnabel, H., 1984a, An immune strain of Halobacterium halobium carries the invertible L segment of phage nH as a plasmid, Proc. Natl. Acad. Sci. USA 81:1017–1020.CrossRefGoogle Scholar
  41. Schnabel, H., 1984b, Integration of plasmid pc19HL into phage genomes during infection of Halobacterium halobium R1-L with phage.1)HL1, Mol. Gen. Genet. 197:19–23.CrossRefGoogle Scholar
  42. Schnabel, H., and Zillig, W., 1984, Circular structure of the genome of phage CH in a lysogenic Halobacterium halobium, Mol. Gen. Genet. 193:422–426.CrossRefGoogle Scholar
  43. Schnabel, H., Zillig, W., Pfäffle, M., Schnabel, R., Michel, H., and Delius, H., 1982a, Halobacterium halobium phage dH, EMBO J. 1:87–92.Google Scholar
  44. Schnabel, H., Schramm, E., Schnabel, R., and Zillig, W., 1982b, Structural variability in the genome of phage bH of Halobacterium halobium,Mol. Gen. Genet. 188:370–377.CrossRefGoogle Scholar
  45. Schnabel, H., Palm, P., Dick, K., and Grampp, B., 1984, Sequence analysis of the insertion element ISH1.8 and of associated structural changes in the genome of phage SH of the archaebacterium Halobacterium halobium, EMBO J. 3:1717–1722.PubMedGoogle Scholar
  46. Segerer, A., Stetter, K. O., and Klink, F., 1985, Two contrary modes of chemolithotrophy in the same archaebacterium, Nature 313:787–789.PubMedCrossRefGoogle Scholar
  47. Stetter, K. O., and Zillig, W., 1985, Thermoplasma and the thermophilic sulfur-dependent archaebacteria, in: The Bacteria (I. C. Gunsalus, J. R. Sokatch, L. N. Ornston, C. R. Woese, and R. S. Wolfe, eds.), Vol. VIII, pp. 85–170, Academic Press, Orlando, FL.Google Scholar
  48. Torsvik, T., 1982, Characterization of four bacteriophages for Halobacterium, with special emphasis on phage Hsl, in: Archaebacteria (O. Kandler, ed.), p. 351, Gustav Fischer Verlag, Stuttgart.Google Scholar
  49. Torsvik, T., and Dundas, I. D., 1974, Bacteriophage of Halobacterium salinarium, Nature 248:680–681.PubMedCrossRefGoogle Scholar
  50. Torsvik, T., and Dundas, I. D., 1978, Halophilic phage specific for Halobacterium salinarium str. 1, in: Energetics and Structure of Halophilic Microorganisms (S. R. Caplan and M. Ginzburg, eds.), pp. 609–614, Elsevier North-Holland, Amsterdam.Google Scholar
  51. Torsvik, T., and Dundas, I. D., 1980, Persisting phage infection in Halobacterium salinarium str. 1, J. Gen. Virol. 47:29–36.CrossRefGoogle Scholar
  52. Vogelsang-Wenke, H., 1984, Charakterisierung des Bakteriophagen rbN aus Halobacterium halobium NRL/JW, Diploma Thesis, Bayerische Julius-Maximilians-Universität, Würzburg, FRG.Google Scholar
  53. Vogelsang-Wenke, H., and Oesterhelt, D., 1986, Halophage 4iN, in: Archaebacteria ’85 (O. Kandler and W. Zillig, eds.), pp. 403–405, Gustav Fischer Verlag, Stuttgart.Google Scholar
  54. Wais, A. C., Kon, M., MacDonald, R. E., and Stollar, B. D., 1975, Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium, Nature 256:314–315.PubMedCrossRefGoogle Scholar
  55. Wich, G., Sibold, L., and Bock, A., 1986a, Genes for tRNA and their putative expression signals in Methanococcus, Syst. Appl. Microbiol. 7:18–25.CrossRefGoogle Scholar
  56. Wich, K. G., Leinfelder, W., and Bock, A., 1986b, Genes for stable RNA in the extreme thermophile Thermoproteus tenax: Introns and transcription signals, EMBO J. 6:523–528.Google Scholar
  57. Whitman, W. B., 1985, Methanogenic bacteria, in: The Bacteria (I. C. Gunsalus, J. R. Sokatch, L. N. Ornston, C. R. Woese, and R. S. Wolfe, eds.), Vol. VIII, pp. 4–84, Academic Press, Orlando, FL.Google Scholar
  58. Woese, C. R., and Fox, G. E., 1977, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, Proc. Natl. Acad. Sci. USA 74:5088–5090.PubMedCrossRefGoogle Scholar
  59. Woese, C. R., and Olsen, G. J., 1986, Archaebacterial phylogeny: Perspectives on the urkingdoms, Syst. Appl. Microbiol. 7:161–177.PubMedCrossRefGoogle Scholar
  60. Woese, C. R., Magrum, L. J., and Fox, G. E., 1978, Archaebacteria, J. Mol. Evol. 11:245–252.PubMedCrossRefGoogle Scholar
  61. Xu, W. L., and Doolittle, W. F., 1983, Structure of the archaebacterial transposable element ISHSO, Nucleic Acids Res. 11:4195–4199.PubMedCrossRefGoogle Scholar
  62. Yeats, S., Mc William, P., and Zillig, W., 1982, A plasmid in the archaebacterium Sulfolobus acidocaldarius, EMBO J. 1:1035–1038.PubMedGoogle Scholar
  63. Zabel, H.-P., Fischer, H., Holler, E., and Winter, J., 1985, In vivo and in vitro evidence of eukaryotic a-type DNA-polymerases in methanogens. Purification of the DNA-polymerase of Methanococcus vannielii, Syst. Appl. Microbiol. 6:111–118.CrossRefGoogle Scholar
  64. Zillig, W., Stetter, K. O., Schäfer, W., Janekovic, D., Wunderl, S., Holz, I., and Palm, P., 1981, Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebac teria isolated from Icelandic solfataras, Zbl. Bakteriol. Hyg. I. Abt. Orig. C2:205–227.Google Scholar
  65. Zillig, W., Holz, I., Janekovic, D., Schäfer, W., and Reiter, W.-D., 1983, The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria, Syst. Appl. Microbiol. 4:88–94.CrossRefGoogle Scholar
  66. Zillig, W., Schnabel, R., and Stetter, K. O., 1985a, Archaebacteria and the origin of the eukaryotic cytoplasm, Curr. Top. Microbiol. Immunol. 114:1–18.CrossRefGoogle Scholar
  67. Zillig, W., Yeats, S., Holz, I., Böck, A., Gropp, F., Rettenberger, M., and Lutz, S., 1985b, Plasmid-related anaerobic autotrophy of the novel archaebacterium Sulfolobus ambivalens,Nature 313:789–791.CrossRefGoogle Scholar
  68. Zillig, W., Yeats, S., Holz, I., Böck, A., Rettenberger, M., Gropp, F., and Simon, G., 1986a, Desulfurolobus ambivalens, gen. nov., sp. nov., an autotrophic archaebacterium facultatively oxidizing or reducing sulfur, Syst. Appl. Microbiol. 8:197–203.CrossRefGoogle Scholar
  69. Zillig, W., Gropp, F., Henschen, A., Neumann, H., Palm, P., Reiter, W.-D., Rettenberger, M., Schnabel, H., and Yeats, S., 1966b, Archaebacterial virus host systems, Syst. Appl. Microbiol. 7:58–66.CrossRefGoogle Scholar
  70. Zillig, W., Holz, I., Klenk, H.-P., Trent, J., Wunderl, S., Janekovic, D., Imsel, E., and Haas, B., 1987, Pyrococcus woesei sp. nov., an ultra-thermophilic marine archaebacterium, representing a novel order, Thermococcales, Syst. Appl. Microbiol. 9:62–70.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Wolfram Zillig
    • 1
  • Wolf-Dieter Reiter
    • 1
  • Peter Palm
    • 1
  • Felix Gropp
    • 1
  • Horst Neumann
    • 1
  • Michael Rettenberger
    • 1
  1. 1.Max-Planck-Institut für BiochemieMartinsriedFederal Republic of Germany

Personalised recommendations