Advertisement

Bacteriophage SPO1

  • Charles Stewart
Part of the The Viruses book series (VIRS)

Abstract

SPO1 is a large virulent bacteriophage of Bacillus subtilis, first isolated from soil in Osaka, Japan (Okubo et al., 1964). Because of its complex sequence of gene action and the isolation of mutations altering that sequence, SPO1 has been an object of intensive study, which has provided fundamental insights into the mechanisms of sequential gene action. The study of other aspects of SPO1 biology has not progressed as far but has identified several interesting phenomena that require further investigation. This review will summarize current knowledge of SPO1.

Keywords

Bacillus Subtilis Early Promoter Thymidylate Synthetase Late Transcription Early Transcription 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alegria, A. H., Kahan, F. M., and Marmur, J., 1968, A new assay for phage hydroxymethylases and its use in Bacillus subtilis transfection, Biochemistry 7: 3179.PubMedCrossRefGoogle Scholar
  2. Alonso, J. C., Sarachu, A. N., and Grau, 0., 1981, DNA gyrase inhibitors block development of Bacillus subtilis bacteriophage SPO1, J. Virol. 39: 855.Google Scholar
  3. Aposhian, H. V., and Tremblay, G. Y., 1966, Deoxythymidylate 5’-nucleotidase. Purification and properties of an enzyme found after infection of B. subtilis with phage SP5C*, /. Biol. Chem. 241: 5095.Google Scholar
  4. Arwert, F., and Veneman, G., 1974, Transfection of Bacillus subtilis with bacteriophage H1 DNA: Fate of transfecting DNA and transfection enhancement in B. subtilis uvr and uvr-strains, Mol. Gen. Genet. 128: 55.PubMedCrossRefGoogle Scholar
  5. Brennan, S. M., 1984, Ribonucleoside triphosphate concentration-dependent termination of bacteriophage SPO1 transcription in vitro by B. subtilis RNA polymerase, Virology 135: 555.PubMedCrossRefGoogle Scholar
  6. Brennan, S. M., and Geiduschek, E. P., 1983, Regions specifying transcriptional termination and pausing in the bacteriophage SPO1 terminal repeat, Nucleic Acids Res. 11: 4157.PubMedCrossRefGoogle Scholar
  7. Brennan, S. M., Chelm, B. K., Romeo, J. M., and Geiduschek, E. P., 1981, A transcriptional map of the bacteriophage SPO1 genome. II. The major early transcription units, Virology 111: 604.PubMedCrossRefGoogle Scholar
  8. Brown, N. C., 1970, 6-(p-Hydroxyphenylazo)-uracil: A selective inhibitor of host DNA replication in phage-infected Bacillus subtilis, Proc. Natl. Acad. Sci. USA 67: 1454.Google Scholar
  9. Chelm, B. K., Romeo, J. M., Brennan, S. M., and Geiduschek, E. P., 198la, A transcriptional map of the bacteriophage SPO1 genome. III. A region of early and middle promoters Othe gene 28 region), Virology 112: 572.Google Scholar
  10. Chelm, B. K., Beard, C., and Geiduschek, E. P., 198 lb, Changes in the association between Bacillus subtilis RNA polymerase core and two specificity-determining subunits during transcription, Biochemistry 20: 6564.Google Scholar
  11. Chelm, B. K., Duffy, J. J., and Geiduschek, E. P., 1982a, Interaction of Bacillus subtilis RNA polymerase core with two specificity-determining subunits, I. Biol. Chem. 257: 6501.Google Scholar
  12. Chelm, B. K., Greene, J. R., Beard, C., and Geiduschek, E. P., 1982b, The transition between early and middle gene expression in the development of phage SPO1: Physiological and biochemical aspects, in: Molecular Cloning and Gene Regulation in Bacilli ( A. T. Ganesan, S. Chang, and J. A. Hoch, eds.), pp. 345–395, Academic Press, New York.Google Scholar
  13. Chiu, C.-S., Tomich, P. K., and Greenberg, G. R., 1976, Simultaneous initiation of synthesis of bacteriophage T4 DNA and of deoxyribonucleotides, Proc. Natl. Acad. Sci. USA 73: 757.PubMedCrossRefGoogle Scholar
  14. Choy, H. A., Romeo, J. M., and Geiduschek, E. P., 1986, Activity of a phage-modified RNA polymerase at hybrid promoters: Effects of substituting thymine for hydroxymethyluracil in a phage SPO1 middle promoter, J. Mol. Biol. 191: 59.CrossRefGoogle Scholar
  15. Coene, M., Hoet, P., and Cocito, C., 1983, Physical map of phage 2C DNA: Evidence for the existence of large redundant ends, Eur. J. Biochem. 132: 69.PubMedCrossRefGoogle Scholar
  16. Costanzo, M. C., 1983, Bacteriophage SPO1 regulatory genes, Ph.D. Thesis, Harvard University, Cambridge, MA.Google Scholar
  17. Costanzo, M., and Pero, J., 1983, Structure of a Bacillus subtilis bacteriophage SPO1 gene encoding a RNA polymerase 4) factor, Proc. Natl. Acad. Sci. USA 80: 1236.PubMedCrossRefGoogle Scholar
  18. Costanzo, M., and Pero, J., 1984, Overproduction and purification of a bacteriophage SPO1-encoded RNA polymerase sigma factor, I. Biol. Chem. 259: 6681.Google Scholar
  19. Costanzo, M., Hannett, N., Brzustowicz, L., and Pero, J., 1983, Bacteriophage SPO1 gene 27: Location and nucleotide sequence, I. Virol. 48: 555.Google Scholar
  20. Costanzo, M., Brzustowicz, L., Hannett, N., and Pero, J., 1984, Bacteriophage SPO1 genes 33 and 34. Location and primary structure of genes encoding regulatory subunits of Bacillus subtilis RNA polymerase, /. Mol. Biol. 180: 533.CrossRefGoogle Scholar
  21. Cregg, J. M., and Stewart, C. R., 1977, Timing of initiation of DNA replication in SPO1 infection of Bacillus subtilis, Virology 80: 289.PubMedCrossRefGoogle Scholar
  22. Cregg, J. M., and Stewart, C. R., 1978, Terminal redundancy of “high frequency of recombination” markers of Bacillus subtilis phage SPO1, Virology 86: 530.PubMedCrossRefGoogle Scholar
  23. Curran, J. F., and Stewart, C. R., 1985a, Cloning and mapping of the SPO1 genome, Virology 142: 78.PubMedCrossRefGoogle Scholar
  24. Curran, J. F., and Stewart, C. R., 1985b, Transcription of Bacillus subtilis plasmid pBD64 and expression of bacteriophage SPO1 genes cloned therein, Virology 142: 98.PubMedCrossRefGoogle Scholar
  25. Davison, P. F., 1963, The structure of bacteriophage SP8, Virology 21: 146.PubMedCrossRefGoogle Scholar
  26. Davison, P. F., Freifelder, D., and Holloway, B. W., 1964, Interruptions in the polynucleotide strands in bacteriophage DNA, J. Mol. Biol. 8: 1.PubMedCrossRefGoogle Scholar
  27. DeAntoni, G. L., Besso, N. E., Zanassi, G. E., Sarachu, A. N., and Grau, O., 1985, Bacterio- phage SPO1 DNA polymerase and the activity of viral gene 31, Virology 143: 16.CrossRefGoogle Scholar
  28. Downard, J. S., and Whiteley, H. R., 1981, Early RNAs in SP82- and SPO1-infected Bacillus subtilis may be processed, J. Virol. 37: 1075.PubMedGoogle Scholar
  29. Duffy, J. J., and Geiduschek, E. P., 1973, Transcription specificity of an RNA polymerase fraction from bacteriophage SPO1-infected B. subtilis, FEBS Lett. 34: 172.PubMedCrossRefGoogle Scholar
  30. Duffy, J. J., and Geiduschek, E. P., 1975, RNA polymerase from phage SPO1-infected and uninfected Bacillus subtilis, J. Biol. Chem. 250: 4530.PubMedGoogle Scholar
  31. Duffy, J. J., and Geiduschek, E. P., 1977, Purification of a positive regulatory subunit from phage SPO1-modified RNA polymerase, Nature 270: 28.PubMedCrossRefGoogle Scholar
  32. Duffy, J. J., Petrusek, R. L., and Geiduschek, E. P., 1975, Conversion of Bacillus subtilis RNA polymerase activity in vitro by a protein induced by phage SPO1, Proc. Natl. Acad. Sci. USA 72: 2366.PubMedCrossRefGoogle Scholar
  33. Dunham, L. T., and Price, A. R., 1974a, Deoxythymidine triphosphate-deoxyuridine triphosphate nucleotidohydrolase induced by Bacillus subtilis bacteriophage fie, Biochemistry 13: 2667.PubMedCrossRefGoogle Scholar
  34. Dunham, L. T., and Price, A. R., 1974b, Mutants of Bacillus subtilis bacteriophage 4)e defective in dTTP-dUTP nucleotidohydrolase, J. Virol. 14: 709.PubMedGoogle Scholar
  35. Epstein, H. T., and Mahler, I., 1968, Mechanisms of enhancement of SP82 transfection. /. Virol. 2: 710.Google Scholar
  36. Ferrari, E., Siccardi, A. G., Galizzi, A., Canosi, U., and Mazza, G., 1977, Host cell reactivation of Bacillus subtilis bacteriophages, /. Bacteriol. 131: 382.Google Scholar
  37. Fox, T. D., 1976, Identification of phage SPO1 proteins coded by regulatory genes 33 and 34, Nature 262: 748.PubMedCrossRefGoogle Scholar
  38. Fox, T. D., and Pero, J., 1974, New phage-SPO1-induced polypeptides associated with Bacillus subtilis RNA polymerase, Proc. Natl. Acad. Sci. USA 71: 2761.PubMedCrossRefGoogle Scholar
  39. Fox, T. D., Losick, R., and Pero, J., 1976, Regulatory gene 28 of bacteriophage SPO1 codes for a phage-induced subunit of RNA polymerase, J. Mol. Biol. 101: 427.PubMedCrossRefGoogle Scholar
  40. Fujita, D. J., 1971, Studies on conditional lethal mutants of bacteriophage SPO1, Ph.D. Thesis, University of Chicago, Chicago.Google Scholar
  41. Fujita, D. J., Ohlsson-Wilhelm, B. M., and Geiduschek, E. P., 1971, Transcription during bacteriophage SPO1 development: Mutations affecting the program of viral transcription, J. Mol. Biol. 57: 301.PubMedCrossRefGoogle Scholar
  42. Gage, L. P., and Fujita, D. J., 1969, Effect of nalidixic acid on deoxyribonucleic acid synthesis in bacteriophage SPO1-infected Bacillus subtilis, J. Bacteriol. 98: 96.PubMedGoogle Scholar
  43. Gage, L. P., and Geiduschek, E. P., 1971a, RNA synthesis during bacteriophage SPO1 development: Six classes of SPO1 RNA, /. Mol. Biot. 57: 279.CrossRefGoogle Scholar
  44. Gage, L. P., and Geiduschek, E. P., 1971b, RNA synthesis during bacteriophage SPO1 development. II. Some modulations and prerequisites of the transcription program, Virology 44: 200.PubMedCrossRefGoogle Scholar
  45. Geiduschek, E. P., and Ito, J., 1982, Regulatory mechanisms in the development of lytic bacteriophages in Bacillus subtilis, in: The Molecular Biology of Bacilli I (D. A. Dubnau, ed.), pp. 203–245, Academic Press, New York.Google Scholar
  46. Geiduschek, E. P., and Sklar, J., 1969, Continual requirement for a host RNA polymerase component in a bacteriophage development, Nature (Lond.) 221: 833.CrossRefGoogle Scholar
  47. Geiduschek, E. P., Armelin, M. C. S., Petrusek, R., Beard, C., Duffy, J. J., and Johnson, G. G., 1977, Effects of the transcription inhibitory protein, TF1, on phage SPO1 promoter complex formation and stability, J. Mol. Biol. 117: 825.PubMedCrossRefGoogle Scholar
  48. Gitt, M. A., Wang, L.-F., and Doi, R. H., 1985, A strong sequence homology exists between the major RNA polymerase a factors of B. subtilis and E. coli, I. Biol. Chem. 260: 7178.Google Scholar
  49. Glassberg, J., Slomiany, R. A., and Stewart, C. R., 1977a, Selective screening procedure for the isolation of heat-and cold-sensitive, DNA replication-deficient mutants of bacteriophage SPO1 and preliminary characterization of the mutants isolated, /. Virol. 21: 54.Google Scholar
  50. Glassberg, J., Franck, M., and Stewart, C. R., 1977b, Initiation and termination mutants of Bacillus subtilis bacteriophage SPO1, /. Virol. 21: 147.Google Scholar
  51. Glassberg, J., Franck, M., and Stewart, C. R., 1977e, Multiple origins of replication for Bacillus subtilis phage SPO1, Virology 78: 433.PubMedCrossRefGoogle Scholar
  52. Green, D. M., 1964, Infectivity of DNA isolated from Bacillus subtilis bacteriophage SP82, 1. Mol. Biol. 10: 438.Google Scholar
  53. Green, D. M., 1966, Intracellular inactivation of infective SP82 bacteriophage DNA, J. Mol. Biol. 22: 1.Google Scholar
  54. Green, D. M., and Laman, D., 1972, Organization of gene function in Bacillus subtilis bacteriophage SP82G, /. Virol. 9: 1033.Google Scholar
  55. Greene, J. R., and Geiduschek, E. P., 1985a, Site-specific DNA binding by the bacteriophage SPO1-encoded type II DNA binding protein, EMBO I. 4: 1345.Google Scholar
  56. Greene, J. R., and Geiduschek, E. P., 1985b, Interaction of a virus-coded type II DNA binding protein, in: Sequence Specificity in Transcription and Translation (R. Calendar, ed.), pp. 255–269, Alan R. Liss, New York.Google Scholar
  57. Greene, J. R., Chelm, B. K., and Geiduschek, E. P., 1982, SPO1 gene 27 is required for viral late transcription, J. Virol. 41: 715.PubMedGoogle Scholar
  58. Greene, J. R., Brennan, S. M., Andrew, D. J., Thompson, C. C., Richards, S. H., Heinrikson, R. L., and Geiduschek, E. P., 1984, Sequence of bacteriophage SPO1 gene coding for transcription factor 1, a viral homologue of the bacterial type II DNA-binding proteins, Proc. Natl. Acad. Sci. USA 81: 7031.PubMedCrossRefGoogle Scholar
  59. Greene, J. R., Morrissey, L. M., Foster, L. M., and Geiduschek, E. P., 1986, DNA binding by the bacteriophage SPO1-encoded type II DNA-binding protein, TF1: Formation of nested complexes at a selective binding site, J. Biol. Chem. 261: 1 2820.Google Scholar
  60. Greene, J. R., Appelt, K., and Geiduschek, E. P., 1987, Prokaryotic chromatin: Site-selective and genome-specific DNA-binding by a virus-coded type II DNA-binding protein, in: DNA: Protein Interactions and Gene Regulation ( E. B. Thompson and J. Papaconstantinou, eds.), pp. 57–65, University of Texas Press, Austin.Google Scholar
  61. Gribskov, M., and Burgess, R. R., 1986, Sigma proteins from E. coli, B. subtilis, phage SPO1 and T4 are homologous proteins, Nucleic Acids Res. 14: 6745.PubMedCrossRefGoogle Scholar
  62. Haslam, E. A., Roscoe, D. H., and Tucker, R. G., 1967, Inhibition of thymidylate synthetaseGoogle Scholar
  63. in bacteriophage-infected Bacillus subtilis Biochim. Biophys. Acta 134:312.Google Scholar
  64. Heintz, N., and Shub, D. A., 1982, Transcriptional regulation of bacteriophage SPO1 protein synthesis in vivo and in vitro, J. Virol. 42: 951.Google Scholar
  65. Hemphill, H. E., and Whiteley, H. R., 1975, Bacteriophages of Bacillus subtilis, Bacteriol. Rev. 39: 257.Google Scholar
  66. Hiatt, W. R., and Whiteley, H. R., 1978, Translation of RNAs synthesized in vivo and in vitro from bacteriophage SP82 DNA, J. Virol. 25: 616.PubMedGoogle Scholar
  67. Hoet, P., Fraselle, G., and Cocito, C., 1976, Recombinational-type transfer of viral DNA during bacteriophage 2C replication in Bacillus subtilis, J. Virol. 17: 718.Google Scholar
  68. Hoet, P. P., Fraselle, G., and Cocito, C., 1979, Discontinuous duplication of both strands of virus 2C DNA, Mol. Gen. Genet. 171: 43.Google Scholar
  69. Hoet, P., Coene, M., and Cocito, C., 1983, Comparison of the physical maps and redundantGoogle Scholar
  70. ends of the chromosomes of phages 2C, SPO1, SP82 and 4e, Eur. J. Biochem. 132:63. Johnson, G. G., and Geiduschek, E. P., 1972, Purification of the bacteriophage SPO1 tran-scription factor 1 J. Biol. Chem. 247 :3571.Google Scholar
  71. Johnson, G. G., and Geiduschek, E. P., 1977, Specificity of the weak binding between the phage SPO1 transcription-inhibitory protein, TF1, and SPO1 DNA, Biochemistry 16: 1473.PubMedCrossRefGoogle Scholar
  72. Johnson, W. C., Moran, C. P., and Losick, R., 1983, Two RNA polymerase sigma factors from Bacillus subtilis discriminate between overlapping promoters for a developmentally related gene. Nature 302: 800.PubMedCrossRefGoogle Scholar
  73. Kahan, E., 1966, A genetic study of temperature-sensitive mutants of the subtilis phage SP82, Virology 30: 650.PubMedCrossRefGoogle Scholar
  74. Kahan, E., 1971, Early and late gene function in bacteriophage SP82, Virology 46: 634.PubMedCrossRefGoogle Scholar
  75. Kallen, R. G., Simon, M., and Marmur, J., 1962, The occurrence of a new pyrimidine basereplacing thymine in a bacteriophage DNA: 5-hydroxymethyl uracil, J. Mol. Biol. 5: 248.CrossRefGoogle Scholar
  76. King, J. J., and Green, D. M., 1977, Inhibition of nuclease activity in Bacillus subtilis following infection w ith bacteriophage SP82G, Biochem. Biophys. Res. Commun. 74: 492.PubMedCrossRefGoogle Scholar
  77. Komberg, A., 1980, DNA Replication, W. H. Freeman, San Francisco.Google Scholar
  78. Kunitani, M. G., and Santi, D. V., 1980, On the mechanism of 2’-deoxyuridylate hydroxymethylase, Biochemistry 19: 1271.PubMedCrossRefGoogle Scholar
  79. Lavi, U., Nattenberg, A., Ronen, A., and Marcus, M., 1974, Bacillus subtilis DNA polymerase III is required for the replication of virulent bacteriophage 4e, J. Virol. 14: 1337.Google Scholar
  80. Lawrie, J. M., and Whiteley, H. R., 1977, A physical map of bacteriophage SP82 DNA, Gene 2: 233.CrossRefGoogle Scholar
  81. Lawrie, J. M., Downard, J. S., and Whiteley, H. R., 1978, Bacillus subtilis bacteriophages SP82, SPO1 and 4e: A comparison of DNAs and of peptides synthesized during infection, J. Virol. 27: 725.Google Scholar
  82. Lee, G., and Pero, J., 1981, Conserved nucleotide sequences in temporally controlled bacteriophage promoters, J. Mol. Biol. 152: 247.PubMedCrossRefGoogle Scholar
  83. Lee, G., Talkington, C., and Pero, J., 1980a, Nucleotide sequence of a promoter recognized by Bacillus subtilis RNA polymerase, Mol. Gen. Genet. 180: 57.CrossRefGoogle Scholar
  84. Lee, G., Hannett, N. M., Korman, A., and Pero, J., 1980b, Transcription of cloned DNA from Bacillus subtilis phage SPO1. Requirement for hydroxymethyluracil-containing DNA by phage-modified RNA polymerase, J. Mol. Biol. 139: 407.PubMedCrossRefGoogle Scholar
  85. Levinthal, C., Hosoda, J., and Shub, D., 1967, The control of protein synthesis after phage infection, in: The Molecular Biology of Viruses (J. S. Colter and W. Paranchych, eds.), pp. 71–87, Academic Press, New York.Google Scholar
  86. Levner, M. H., 1972a, Replication of viral DNA in SPO1-infected Bacillus subtilis. II. DNA maturation during aborative infection, Virology 48: 417.PubMedCrossRefGoogle Scholar
  87. Levner, M. H., 1972b, Eclipse of viral DNA infectivity in SPO1-infected Bacillus subtilis, Virology 5n: 267.CrossRefGoogle Scholar
  88. Levner, M. H., and Cozzarelli, N. R., 1972, Replication of viral DNA in SPO1-infected Bacillus subtilis. I. Replicative intermediates, Virology 48: 402.PubMedCrossRefGoogle Scholar
  89. Liljemark, W. F., and Anderson, D. L., 1970, Structure of Bacillus subtilis bacteriophage 0925 and 0925 deoxyribonucleic acid, J. Virol. 6: 107.PubMedGoogle Scholar
  90. Losick, R., and Pero, J., 1981, Cascades of sigma factors. Cell 25: 582.PubMedCrossRefGoogle Scholar
  91. Marcus, M., and Newlon, M. C., 1971, Control of DNA synthesis in Bacillus subtilis by 09e, Virology 44: 83.PubMedCrossRefGoogle Scholar
  92. Marmur, J., and Greenspan, C. M., 1963, Transcription in vivo of DNA from bacteriophage SP8, Science 142: 387.PubMedCrossRefGoogle Scholar
  93. Marmur, J., Greenspan, C. M., Palecek, E., Kahan, F. M., Levine, J., and Mandel, M., 1963, Specificity of the complementary RNA formed by Bacillus subtilis infected with bacteriophage SP8, Cold Spring Harbor Symp. Quant. Biol. 28: 191.CrossRefGoogle Scholar
  94. McAllister, W. T., 1970, Bacteriophage infection: Which end of the SP82G genome goes in first? J. Virol. 5: 194.PubMedGoogle Scholar
  95. McAllister, W. T., and Green, D. M., 1972, Bacteriophage SP82G inhibition of intracellular deoxyribonucleic acid inactivation process in Bacillus subtilis, J. Virol. 10: 51.PubMedGoogle Scholar
  96. Nishihara, M., Chrambach, A., and Aposhian, H. V., 1967, The deoxycytidylate deaminase found in Bacillus subtilis infected with phage SP8, Biochemistry 6: 1877.PubMedCrossRefGoogle Scholar
  97. Okubo, S., Strauss, B., and Stodolsky, M., 1964, The possible role of recombination in the infection of competent Bacillus subtilis by bacteriophage deoxyribonucleic acid, Virology 24: 552.PubMedCrossRefGoogle Scholar
  98. Okubo, S., Yanagida, T., Fujita, D. J., and Ohlsson-Wilhelm, B. M., 1972, The genetics of bacteriophage SPO1, Biken J. 15: 81.PubMedGoogle Scholar
  99. Panganiban, A. T., and Whiteley, H. R., 1981, Analysis of bacteriophage SP82 major “early” in vitro transcripts, /. Virol. 37: 372.Google Scholar
  100. Panganiban, A. T., and Whiteley, H. R., 1983a, Purification and properties of a new Bacillus subtilis RNA processing enzyme, /. Biol. Chem. 258: 1 2487.Google Scholar
  101. Panganiban, A. T., and Whiteley, H. R., 1983b, Bacillus subtilis RNAase III cleavage sites in phage SP82 early mRNA, Cell 33: 907.Google Scholar
  102. Parker, M. L., 1979, Structure and composition of Bacillus subtilis bacteriophage SPO1, Ph.D. Thesis, University of California, Los Angeles.Google Scholar
  103. Parker, M. L., and Eiserling, F. A., 1983a, Bacteriophage SPO1 structure and morphogenesis. I. Tail structure and length regulation, J. Virol. 46: 239.PubMedGoogle Scholar
  104. Parker, M. L., and Eiserling, F. A., 1983b, Bacteriophage SPO1 structure and morphogenesis. III. SPO1 proteins and synthesis, J. Virol. 46: 260.PubMedGoogle Scholar
  105. Parker, M. L., Ralston, E. J., and Eiserling, F. A., 1983, Bacteriophage SPO1 structure and morphogenesis. II. Head structure and DNA size, J. Virol. 46: 250.PubMedGoogle Scholar
  106. Pene, J. J., and Marmur, J., 1967, Deoxyribonucleic acid replication and expression of early and late bacteriophage functions in Bacillus subtilis, I. Virol. 1: 86.Google Scholar
  107. Perkus, M. E., and Shub, D. A., 1985, Mapping the genes in the terminal redundancy of bacteriophage SPO1 with restriction endonucleases, /. Virol. 56: 40.Google Scholar
  108. Pero, J., 1983, A procaryotic model for the developmental control of gene expression, in: Gene Structure and Regulation in Development (S. Subtelny and F. C. Kafatos, eds.), pp. 227–233, Alan R. Liss, New York.Google Scholar
  109. Pero, J., Tjian, R., Nelson, J., and Losick, R., 1975, In vitro transcription of a late class of phage SPO1 genes, Nature 257: 248.Google Scholar
  110. Pero, J., Hannett, N. M., and Talkington, C., 1979, Restriction cleavage map of SPO1 DNA: General location of early, middle, and late genes, J. Virol. 31: 156.PubMedGoogle Scholar
  111. Piggot, P. J., and Hoch, J. A., 1985, Revised genetic linkage map of Bacillus subtilis, Microbiol. Rev. 49: 158.PubMedGoogle Scholar
  112. Price, A. R., Dunham, L. F., and Walker, R. L., 1972, Thymidine triphosphate nucleotidohydrolase and deoxyuridylate hydroxymethylase induced by mutants of Bacillus subtilis bacteriophage SP82G, /. Virol. 10: 1240.Google Scholar
  113. Rabussay, D., and Geiduschek, E. P., 1977, Regulation of gene action in the development of lytic bacteriophages, in: Comprehensive Virology 8 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), pp. 1–196, Plenum Press, New York.Google Scholar
  114. Ratner, D., 1974, The interaction of bacterial and phage proteins with immobilized Escherichia coli RNA polymerase, /. Mol. Biol. 88: 373.CrossRefGoogle Scholar
  115. Reeve, J. N., Mertens, G., and Amann, E, 1978, Early development of bacteriophages SPO1 and SP82G in minicells of Bacillus subtilis, J. Mol. Biol. 120: 183.PubMedCrossRefGoogle Scholar
  116. Romeo, J. M., Brennan, S. M., Chelm, B. K., and Geiduschek, E. P., 1981, A transcriptional map of the bacteriophage SPO1 genome. I. The major early promoters, Virology 111: 588.PubMedCrossRefGoogle Scholar
  117. Roscoe, D. H., 1969a, Synthesis of DNA in phage-infected B. subtilis, Virology 38:527. Roscoe, D. H., 1969b, Thymidine triphosphate nucleotidohydrolase: A phage-induced enzyme in Bacillus subtilis, Virology 38: 520.PubMedCrossRefGoogle Scholar
  118. Roscoe, D. H., and Tucker, R. G., 1964, The biosynthesis of a pyrimidine replacing thymine in bacteriophage DNA, Biochem. Biophys. Res. Commun. 16: 106.PubMedCrossRefGoogle Scholar
  119. Rosenberg, M., and Court, D., 1979, Regulatory sequences involved in the promotion and termination of RNA transcription. Annu. Rev. Gen. 13: 319.CrossRefGoogle Scholar
  120. Sarachu, A. N., Anon, M. C., and Grau, 0., 1978, Bacteriophage SPO1 development: Defects in a gene 31 mutant, J. Virol. 27: 483.PubMedGoogle Scholar
  121. Sarachu, A. N., Alonso, J. C., and Grau, 0., 1980, Novobiocin blocks the shutoff of SPO1 early transcription, Virology 105: 13.PubMedCrossRefGoogle Scholar
  122. Shub, D. A., 1966, Functional stability of messenger RNA during bacteriophage develop-ment, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  123. Shub, D. A., 1975, Nature of the suppressor of Bacillus subtilis HA101B, J. Bacteriol. 122: 788.PubMedGoogle Scholar
  124. Shub, D. A., and Johnson, G. G., 1975, Bacteriophage SPO1 DNA- and RNA-directed protein synthesis in vitro: The effect of TF-1, a template-selective transcription inhibitor, Mol. Gen. Genet. 137: 161.PubMedCrossRefGoogle Scholar
  125. Shub, D. A., Swanton, M., and Smith, D. H., 1979, The nature of transcription selectivity of bacteriophage SPO1-modified RNA polymerase, Mol. Gen. Genet. 172: 193.PubMedCrossRefGoogle Scholar
  126. Sinha, N. K., Morais, C. F., and Alberts, B. M., 1980, Efficient in vitro replication of double-stranded DNA templates by purified T4 bacteriophage replication system, J. Biol. Chem. 255: 4290.PubMedGoogle Scholar
  127. Spiegelman, G. B., and Whiteley, H. R., 1974, In vivo and in vitro transcription by ribonucleic acid polymerase from SP82-infected Bacillus subtilis, /. Biol. Chem. 249: 1483.Google Scholar
  128. Stetler, G. L., King, G. J., and Huang, W. M., 1979, T4 DNA-delay proteins, required for specific DNA replication, form a complex that has ATP-dependent DNA topoisomerase activity, Proc. Natl. Acad. Sci. USA 76: 3737.PubMedCrossRefGoogle Scholar
  129. Stewart, C. R., 1984, Dissection of HA20, a double mutant of bacteriophage SPO1, J. Virol. 49: 300.PubMedGoogle Scholar
  130. Stewart, C. R., and Franck, M., 1981, Predominance of bacteriophage SP82 over bacteriophage SPO1 in mixed infections of Bacillus subtilis, J. Virol. 38: 1081.PubMedGoogle Scholar
  131. Stewart, C. R., and Marmur, J., 1970, Increase in lytic activity in competent cells of Bacillus subtilis after uptake of deoxyribonucleic acid, /. Bacteriol. 101: 449.Google Scholar
  132. Stewart, C. R., Cater, M., and Click, B., 1971, Lysis of Bacillus subtilis by bacteriophage SP82 in the absence of DNA synthesis, Virology 46: 327.PubMedCrossRefGoogle Scholar
  133. Stewart, C. R., Click, B., and Tole, M. F., 1972, DNA replication and late protein synthesis during SP82 infection of Bacillus subtilis, Virology 50: 653.PubMedCrossRefGoogle Scholar
  134. Stewart, G. C., and Bott, K. F., 1983, DNA sequence of the tandem ribosomal RNA promoter for B. subtilis operon rrnB, Nucleic Acids Res. 11: 6289.PubMedCrossRefGoogle Scholar
  135. Sugino, A., and Bott, K. F., 1980, Bacillus subtilis deoxyribonucleic acid gyrase, /. Bacteriol. 141: 1331.Google Scholar
  136. Swanton, M., Smith, D. H., and Shub, D. A., 1975, Synthesis of specific functional messenger RNA in vitro by phage-SPO1 modified RNA polymerase of Bacillus subtilis, Proc. Natl. Acad. Sci. USA 72: 4886.PubMedCrossRefGoogle Scholar
  137. Talkington, C., and Pero, J., 1977, Restriction fragment analysis of temporal program of bacteriophage SPO1 transcription and its control by phage-modified RNA polymerases, Virology 83: 365.PubMedCrossRefGoogle Scholar
  138. Talkington, C., and Pero, J., 1978, Promoter recognition by phage SPO1-modified RNA polymerasc, Proc. Natl. Acad. Sci. USA 75: 1185.PubMedCrossRefGoogle Scholar
  139. Talkington, C., and Pero, J., 1979, Distinctive nucleotide sequences of promoters recognized by RNA polymerase containing a phage-coded “cr-like” protein, Proc. Natl. Acad. Sci. USA 76: 5465.PubMedCrossRefGoogle Scholar
  140. Tanaka, I., Appelt, K., Dijk, J., White, S. W., and Wilson, K. S., 1984, 3-A resolution of a protein with histone-like properties in prokaryotes, Nature 310: 376.Google Scholar
  141. Tomich, P. K., Chiu, C.-S., Wovcha, M. G., and Greenberg, G. R., 1974, Evidence for a complex regulating the in vivo activation of early enzymes induced by bacteriophage T4, /. Biol. Chem. 249: 7613.Google Scholar
  142. Truffaut, N., Revet, B., and Soulie, M. O., 1970, Etude comparative des DNA de phages 2C, SP8, SP82, fie, SPOI et SP50, /. Biochem. 15: 391.Google Scholar
  143. Watson, J. D., 1972, Origin of concatemeric T7 DNA, Nature New Biol. 239: 197.PubMedCrossRefGoogle Scholar
  144. Webb, V. B., and Spiegelman, G. B., 1984, Ribosomal RNA synthesis in uninfected and SPO lam 34 infected B. subtilis, Mol. Gen. Genet. 194: 98.CrossRefGoogle Scholar
  145. Wilhelm, J. M., Johnson, G., Haselkorn, R., and Geiduschek, E. P., 1972, Specific inhibition of bacteriophage SPO1 DNA-directed protein synthesis by the SPOT transcription factor, TF1, Biochem. Biophys. Res. Commun. 46: 1970.PubMedCrossRefGoogle Scholar
  146. Wilson, D. L., and Gage, L. P., 1971, Certain aspects of SPO1 development, /. Mol. Biot. 57: 297.CrossRefGoogle Scholar
  147. Wilson, D. L., and Geiduschek, E. P., 1969, A template-selective inhibitor of in vitro transcription, Proc. Natl. Acad. Sci. USA 62: 514.PubMedCrossRefGoogle Scholar
  148. Wu, R., and Geiduschek, E. P., 1975, The role of replication proteins in the regulation of bacteriophage T4 transcription, /. Mol. Biol. 96: 513.CrossRefGoogle Scholar
  149. Yansura, D. G., and Henner, D. J., 1984, Use of the Escherichia coli lac repressor and operator to control gene expression in Bacillus subtilis, Proc. Natl. Acad. Sci. USA 81: 439.PubMedCrossRefGoogle Scholar
  150. Yehle, C. O., and Ganesan, A. T., 1972, Deoxyribonucleic acid synthesis in bacteriophage SPO1-infected Bacillus subtilis. I. Bacteriophage deoxyribonucleic acid synthesis and fate of host deoxyribonucleic acid in normal and polymerase-deficient strains, I. Virol. 9: 263.Google Scholar
  151. Yehle, C. O., and Ganesan, A. T., 1973, Deoxyribonucleic synthesis in bacteriophage SPOIinfected Bacillus subtilis. II. Purification and catalytic properties of a deoxyribonucleic acid polymerase induced after infection, /. Biol. Chem. 248: 7456.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Charles Stewart
    • 1
  1. 1.Department of BiologyRice UniversityHoustonUSA

Personalised recommendations