Phage Evolution and Speciation

  • Allan Campbell
Part of the The Viruses book series (VIRS)


One of the most important conceptual advances in evolutionary science during this century was the populational definition of the biological species (Mayr, 1969.) A species is defined not by the resemblance of individuals to some type specimen but rather by the cause of that resemblance—their genetic relatedness as members of a closed interbreeding population whose genes can be considered a common pool. Even among sexually reproducing higher eukaryotes, the species thus conceived is an ideal seldom fully realized. Attempts to apply the concept too literally have been justly criticized (Ehrlich and Raven, 1969). Nevertheless, the realization that the essence of speciation lies in reproductive isolation must qualify as one of the major insights in all of biology.


Gene Pool Reproductive Isolation Cold Spring Harbor Laboratory Species Concept Illegitimate Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anilionis, A., and Riley, M., 1980, Conservation and variation of nucleotide sequences within related bacterial genomes: Escherichia coli strains, J. Bacteriol. 143: 355.PubMedGoogle Scholar
  2. Backhaus, H., and Petri, J. B., 1984, Sequence analysis of a region from the early right operon in phage P22 including the replication genes 18 and 12, Gene 32: 289.PubMedCrossRefGoogle Scholar
  3. Benedik, M., Mascarenhas, D., and Campbell, A., 1983, The integrase promoter and T1 terminator in bacteriophages X and 434, Virology 126: 658.PubMedCrossRefGoogle Scholar
  4. Campbell, A., 1981, Evolutionary significance of accessory DNA elements in bacteria, Annu. Rev. Microbiol. 35: 55.PubMedCrossRefGoogle Scholar
  5. Campbell, A., and Botstein, D., 1983, Evolution of the lambdoid phages, in: Lambda II ( R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 365–380, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  6. Campbell, A., Ma, D. P., Benedik, M., and Limberger, R., 1986, Reproductive isolation in prokaryotes and their accessory DNA elements, in: Banbury Report 24: Antibiotic Resistance Genes: Ecology, Transfer, and Expression, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp. 337–345.Google Scholar
  7. Davis, R. W., and Hyman, R. W., 1971, A study in evolution: The DNA base sequence homology between coliphages T7 and T3, /. Mol. Biol. 62: 287.CrossRefGoogle Scholar
  8. Dove, W., 1971, Biology inference, in: The Bacteriophage Lambda (A. D. Hershey, ed.), pp. 297–312, Cold Spring Harbor Laboratories, Cold Spring Harbor, NY.Google Scholar
  9. Ehrlich, P. R., and Raven, P. H., 1969, Differentiation of populations, Science 165: 1228.PubMedCrossRefGoogle Scholar
  10. Espion, D., Kaiser, K., and Dambly-Chaudiere, C., 1983, A third defective lambdoid pro-phage of Escherichia coli K-12 defined by the X derivative, X qin 111, J. Mol. Biol. 170: 611PubMedCrossRefGoogle Scholar
  11. Espion, D., Kaiser, K., and Dambly-Chaudiere, C., Federal Register (U.S.), 1986, 51: 23Google Scholar
  12. Fiandt, M., Hradecna, Z., Lozeron, H. A., and Szybalski, W., 1971, Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNAs of coliphages lambda and phi 80, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 329–354, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  13. Franklin, N. C., 1985, Conservation of genome form but not sequence in the transcription antitermination determinants of bacteriophages X, 41)21, and P22, J. Mol. Biol. 181: 75.PubMedCrossRefGoogle Scholar
  14. Grosschedl, R., and Schwarz, E., 1979, Nucleotide sequence of the Cro-cII-oop region of bacteriophage 434 DNA, Nucleic Acids Res. 6: 867.PubMedCrossRefGoogle Scholar
  15. Hansen, E. B., and Yarmolinsky, M. B., 1986, Host participation in plasmid maintenance: dependence upon dnaA of replicons derived from P1 and F, Proc. Natl. Acad. Sci. USA 83: 4423.PubMedCrossRefGoogle Scholar
  16. Hershey, A. D., 1971, Comparative molecular structure among related phage DNA’s, Carnegie Inst. Washington Yearb. 1970: 3.Google Scholar
  17. Highton, P. J., Chang, Y., Macotte, W. R. Jr., and Schnaitman, C. A., 1985, Evidence that the outer membrane protein nmpC of Escherichia coli K-12 lies within the defective qsr prophage, J. Bacteriol. 162: 256.PubMedGoogle Scholar
  18. Hooper, I., and Egan, J. B., 1981, Coliphage 186 infection requires host initiation functions dnaA and dnaC, J. Virol. 40: 599.PubMedGoogle Scholar
  19. Hunkapiller, T. H., Huang, H., Hood, L., and Campbell, J. H., 1982, The impact of modern genetics on evolutionary theory, in: Perspectives on Evolution ( R. Milkman, ed.), pp. 164–189, Sinauer, Sunderland, MA.Google Scholar
  20. Kaiser, K., and Murray, N. E., 1979, Physical characterisation of the Rac prophage in E. coli K-12, Mol. Gen. Genet. 175: 159.PubMedCrossRefGoogle Scholar
  21. Kaiser, K., and Murray, N. E., 1980, On the nature of sbcA mutations in E. coli K-12. Mol. Gen. Genet. 179: 555.PubMedCrossRefGoogle Scholar
  22. Matthews, R. E. F., 1985, Viral taxonomy for the nonvirologist, Annu. Rev. Microbiol. 39: 451.PubMedCrossRefGoogle Scholar
  23. Mayr, E., 1969, Principles of Systematic Zoology, McGraw-Hill, New York.Google Scholar
  24. Morse, M. L., Lederberg, E., and Lederberg, J., 1956, Transduction in Escherichia coli K-12, Genetics 41: 121.Google Scholar
  25. Morse, M. L., Lederberg, E., and Lederberg, J., 1956, Transduction in Escherichia coli K-12, Genetics 41: 121.Google Scholar
  26. Redfield, R., 1986, Structure of cryptic prophages. Thesis, Stanford University.Google Scholar
  27. Riley, M., 1984, Arrangement and rearrangement of bacterial genomes, in: Microorganisms as Model Systems for Studying Evolution ( R. P. Mortlock, ed.), pp. 285–316, Plenum, New York.Google Scholar
  28. Riley, M., and Anilionis, A., 1980, Conservation and variation of nucleotide sequences within related bacterial genomes: Enterobacteriaceae, J. Bacterial. 143: 366.Google Scholar
  29. Sauer, R. T., Yocum, R., Doolittle, R., Lewis, M., and Pabo, C., 1982, Homology among DNA binding proteins suggests use of a conserved super-secondary structure, Nature 298: 447.PubMedCrossRefGoogle Scholar
  30. Selander, R. K., and Levin, B. R., 1980, Genetic diversity and structure in Escherichia coli populations, Science 210: 545.PubMedCrossRefGoogle Scholar
  31. Shen, P., and Huang, H. V., 1986, Homologous recombination in Escherichia coli: Dependence on substrate length and homology, Genetics 112:441.Google Scholar
  32. Simon, M. N., Davis, R. W., and Davidson, N., 1971, Heteroduplexes of DNA molecules of lambdoid phages: Physical mapping of their base sequence relationships by electron microscopy, in: The Bacteriophage Lambda ( A. D. Hershey, ed.), pp. 313–328, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.Google Scholar
  33. Sonea, S., and Panisset, M., 1983, A New Bacteriology, Jones and Bartlett, Boston. Strathem, A., and Herskowitz, I., 1975, Defective prophage in Escherichia coli K-12 strains, Virology 67:136.Google Scholar
  34. Susskind, M., and Botstein, D., 1978, Molecular genetics of bacteriophage P22, Microbiol. Rev. 42:385.Google Scholar
  35. Walker, G. C., 1984, Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli, Microbiol. Rev. 48: 60.PubMedGoogle Scholar
  36. Wharton, R. P., and Ptashne, M., 1985, Changing the binding specificity of a repressor by redesigning an a-helix. Nature 316: 601.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Allan Campbell
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations