Cytolytic Cells in M. tuberculosis Infections

  • Stefan H. E. Kaufmann
  • Gennaro De Libero
Part of the Infectious Agents and Pathogenesis book series (IAPA)


Tuberculosis is a bacterial infectious disease that, left untreated, often takes a chronic course.1 To a great extent, this chronicity is due to the fact that the etiologic agents, Mycobacterium tuberculosis, M. bovis, and M. africanum have developed means to survive or even grow in one of the host’s most potent effector cells, the mononuclear phagocytes. These cells are particularly specialized to engulf, kill, and degrade invading microorganisms, yet at first sight may not look like an attractive habitat for microbial living. Thus, the evasion mechanisms used by pathogenic mycobacteria must be highly effective. Although these mechanisms have hitherto not been fully elucidated, it is generally believed that they are manifold, including (1) resistance to reactive oxygen metabolites and lysosomal enzymes, (2) inhibition of phagosome-lysosome fusion, and (3) perhaps evasion into the cytoplasm.2


Mononuclear Phagocyte Cytolytic Activity Mycobacterial Antigen Bone Marrow Macrophage Brucella Abortus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hahn, H., and Kaufmann, S. H. E., 1981, The role of cell-mediated immunity in bacterial infections, Rev. Infect. Dis. 3: 1221–1250.PubMedCrossRefGoogle Scholar
  2. 2.
    Andrew, P. W., Jackett, P. S., and Lowrie, D. B., 1985, Killing and degradation of microorganisms by macrophages, in: Mononuclear Phagocytes: Physiology and Pathology (R. T. Dean and W. Jessup, eds.), pp. 311–335, Elsevier, Amsterdam.Google Scholar
  3. 3.
    Fitch, F. W., 1986, T-cell clones and T-cell receptors, Microbiol. Rev. 50:50–69.PubMedGoogle Scholar
  4. 4.
    Lepay, D. A., Nathan. C. F., Murray, H. W., Steinman, R. M., and Cohn, Z. A., 1985, Murine Kupffer cells: Mononuclear phagocytes deficient in the generation of reactive oxygen intermediates, J. Exp. Med. 161: 1079–1096.PubMedCrossRefGoogle Scholar
  5. 5.
    Lowrie, D. B., 1983, Mononuclear phagocyte-mycobacterium interaction, In: Biology of Mycobacteria ,Vol. II (C. Ratledge and J. Stanford, eds.), pp. 235–278, Academic, London.Google Scholar
  6. 6.
    Flesch, I., and Kaufmann, S. H. E., 1987, Mycobacterial growth inhibition by interferon activated bone marrow macrophages and differential susceptibility among strains of Mycobacterium tuberculosis, J. Immunol. 138:4408–4413.PubMedGoogle Scholar
  7. 7.
    Kaufmann, S. H. E., Hug, E., and De Libero, G., 1986, Listeria monocytogenes-reactive T lymphocyte clones with cytolytic activity against infected target cells, J. Exp. Med. 164:363–368.PubMedCrossRefGoogle Scholar
  8. 8.
    De Libero, G. ,and Kaufmann, S. H. E., 1986, Antigen-specific Lyt2+ cytolytic T lymphocytes from mice infected with the intracellular bacterium Listeria monocytogenes, J. Immunol. 137:2688–2694.PubMedGoogle Scholar
  9. 9.
    Meerpohl, H. G., Lohmann Matthes, M. L., and Fischer, H., 1976, Studies on the activation of mouse bone marrow-derived macrophages by the macrophage cytotoxicity factor (MCF), Eur. J. Immunol. 6:213–217.PubMedCrossRefGoogle Scholar
  10. 10.
    Parish, C. R., and Mullbacher, A. ,1983, Automated colorimetric assay for T cell cytotoxicity, J. Immunol. Methods 58:225–237.PubMedCrossRefGoogle Scholar
  11. 11.
    Rook, G. A. W., 1983, An integrated view of the immunology of the mycobacteriosis in guinea pigs, mice and men, in: Biology of Mycobacteria ,Vol. II (C. Ratledge and J. Stanford, eds.), pp. 279–319, Academic, London.Google Scholar
  12. 12.
    Roehm, N., Herron, L., Cambier, J., Di Guisto, D., Haskins, K., Kappler, J., and Marrack, P., 1984, The major histocompatibility complex-restricted antigen receptor on T cells: Distribution on thymus and peripheral T cells, Cell 83:577–584.CrossRefGoogle Scholar
  13. 13.
    Chiplunkar, S., De Libero, G., and Kaufmann, S. H. E., 1986, Mycobacterium leprae- specific Lyt2+ T lymphocytes with cytolytic activity, Infect. Immun. 54:793–797.Google Scholar
  14. 14.
    Rollwagen, F. M., Dasch, G. A., and Jerrells, T. R., 1986. Mechanisms of immunity to rickettsial infection: Characterization of a cytotoxic effector cell, J. Immunol. 136:1418– 1421.PubMedGoogle Scholar
  15. 15.
    Eugui, E. M., and Emery, D. L., 1981, Genetically restricted cell-mediated cytotoxicity in cattle immune to Theileria parva, Nature (Lond.) 290:251–254.CrossRefGoogle Scholar
  16. 16.
    Hank, J. A., and Sondel, P. M., 1982, Soluble bacterial antigen induces specific helper and cytotoxic responses by human lymphocytes in vitro, J. Immunol. 128:2734–2738.PubMedGoogle Scholar
  17. 17.
    Hansen, P. W., Madsen, M., Christiensen, S. E., Johnsen, H. E., and Kissmeyer-Nillsen, F., 1984, Cell mediated PPD specific cytotoxicity against human monocyte targets: Evidence for restriction by class II HLA antigens, Tissue Antigens 23:171–180.PubMedCrossRefGoogle Scholar
  18. 18.
    Jones, B., Tite, J. P., and Janeway, C. A., 1986, Different phenotypic recipients of the mouse B cell tumor A20/25 are selected by antigen-and mitogen-triggered cytotoxicity of L3T4-positive, I-A-restricted T cell clones, J. Immunol. 136:348–356.PubMedGoogle Scholar
  19. 19.
    Kaufmann, S. H. E., Hug, E., Väth, U., and De Libero, G., 1987, Specific lysis of Listerial monocytogenes infected macrophages by class II-restricted L3T4+ T cells, Eur. J. Immunol. 17:351–357.PubMedCrossRefGoogle Scholar
  20. 20.
    Wolfe, S. A., Tracey, D. E., and Henney, C. S., 1977, BCG-induced murine effector cells. II. Characterization of natural killer cells in peritoneal exudates, J. Immunol. 119:1152–1157.PubMedGoogle Scholar
  21. 21.
    Santoli, D., and Koprowsky, H., 1979, Mechanism of activation of human natural killer cells against tumor and virus-infected cells, Immunol. Rev. 44: 125–163.PubMedCrossRefGoogle Scholar
  22. 22.
    Grimm, I. E. A., Mazumder, A. ,Zhang, H. Z., and Rosenberg, S. A., 1982, The lymphokine activated killer cell phenomenon: Lysis of NK-resistant fresh solid tumor cells by IL-2 activated autologous human peripheral blood lymphocytes, J. Exp. Med. 155:1823–1841.PubMedCrossRefGoogle Scholar
  23. 23.
    Kaufmann, S. H. E., Simon, M. M., and Hahn, H., 1979, Specific Lyt 123 T cells are involved in protection against Listeria monocytogenes and in delayed-type hypersensitivity to listerial antigens, J. Exp. Med. 150: 1033–1038.PubMedCrossRefGoogle Scholar
  24. 24.
    Kaufmann, S. H. E., Hug, E., Väth, U., and Müller, I., 1985, Effective antibacterial protection against Listeria monocytogenes and delayed-type hypersensitivity to listerial antigens depend on cooperation between specific L3T4+ and Lyt2+ T cells, Infect. Immun. 48:263–266.PubMedGoogle Scholar
  25. 25.
    Cheers, C., and Sandrin, M. S., 1983, Restriction in adoptive transfer of resistance to Listeria monocytogenes. II. Use of congenic and mutant mice show transfer to be H-2K restricted, Cell Immunol. 78:199–205.PubMedCrossRefGoogle Scholar
  26. 26.
    Orme, I. M., and Collins, F. M., 1984, Adoptive protection of the Mycobacterium tuberculosis infected lung: Dissociation between cells that passively transfer protective immunity and those that transfer delayed-type hypersensitivity to tuberculin, Cell Immunol. 84:113–120.PubMedCrossRefGoogle Scholar
  27. 27.
    Adu, H. O., Curtiss, J., and Turk, J. L., 1983, The resistance of C57BL/6 mice to subcutaneous infection with Mycobacterium lepraemurium is dependent on both T cells and other cells of bone marrow origin, Cell. Immunol. 78:249–256.PubMedCrossRefGoogle Scholar
  28. 28.
    Pavlov, H., Hogarth, M. ,McKenzie, I. F. C., and Cheers, C., 1982, In vivo and in vitro effects of monoclonal antibody to Ly antigens on immunity to infection, Cell. Immunol. 71:127–138.PubMedCrossRefGoogle Scholar
  29. 29.
    Lin, Y.-L., and Askonas, B. A. ,1981, Biological properties of an influenza A virus-specific killer T cell clone. Inhibition of virus replication in vivo and induction of delayed-type-hypersensitivity reactions, J. Exp. Med. 154:225–234.PubMedCrossRefGoogle Scholar
  30. 30.
    Lukacher, A. E., Braciale, V. L., and Braciale, T. J., 1984, In vivo effector function of influenza virus-specific cytotoxic T lymphocyte clones is highly specific, J. Exp. Med. 160:814–826.PubMedCrossRefGoogle Scholar
  31. 31.
    Saito H., Tomioka, H., Sato, K., and Watanabe, T., 1986, Abilities of human oligoneu-droglial cells and mouse Schwann cells to phagocytose Mycobacterium leprae and other mycobacteria, Infect. Immun. 51: 157–162.PubMedGoogle Scholar
  32. 32.
    Mapother, M. E., and Songer, J. G., 1984, In vitro interaction of Mycobacterium avium with intestinal epithelial cells, Infect. Immun. 45:67-73.Google Scholar
  33. 33.
    Modlin, R. L., Hofman, F. M., Meyer, P. R., Sharma, O. P., Taylor, C. R., and Rea, T. H., 1983, In situ demonstration of T lymphocyte subsets in granulomatous inflammation: Leprosy, rhinoscleroma and sarcoidosis, Clin. Exp. Immunol. 51:430–438.PubMedGoogle Scholar
  34. 34.
    Beck, J. S., Morley, S. M., Gibbs, J. H., Potts, R. C., Ilias, M. I., Kardjito, T., Grange, J. M., Stanford, J., and Brown, R. A., 1986, The cellular responses of tuberculosis and leprosy patients and of healthy controls in skin tests to “new tuberculin” and leprosin A., Clin. Exp. Immunol. 64:484–494.PubMedGoogle Scholar
  35. 35.
    Näher, H., Sperling, U., and Hahn, H., 1985, H-2K-restricted granuloma formation by Lyt-2 + T cells in anti-bacterial protection to facultative intracellular bacteria, J. Immunol. 134:569–572.PubMedGoogle Scholar
  36. 36.
    Wilson, G. S., Schwabacher, H., and Maier, I., 1940, The effect of the desensitization of tuberculous guinea-pigs, J. Pathol. 50:89–109.CrossRefGoogle Scholar
  37. 37.
    Seibert, F. B., 1933, Effect of sensitization with tuberculin protein upon development and course of experimental tuberculosis, Proc. Soc. Exp. Biol. Med. 30:1274–1276.Google Scholar
  38. 38.
    Nyke, W., 1956, Enhancement of resistance to tuberculosis in mice experimentally infected with Brucella abortus, Am. Rev. Tuber. 73:251–265.Google Scholar
  39. 39.
    Crowle, A. J. 1959, Delayed hypersensitivity in several strains of mice studied with different tests, J. Allergy 30:442–459.PubMedCrossRefGoogle Scholar
  40. 40.
    Loveland, B. E., and McKenzie, I. F. C., 1982, Which T cells cause graft rejection?, Transplantation 33:217–223.PubMedGoogle Scholar
  41. 41.
    Kaufman, S. H. E., and Flesch, I., 1986, Function and antigen-recognition pattern of L3T4 + T-cell clones from Mycobacterium tuberculosis immune mice, Infect. Immun. 54:291–296.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Stefan H. E. Kaufmann
    • 1
  • Gennaro De Libero
    • 1
  1. 1.Max-Planck-Institut für ImmunbiologieFreiburgFederal Republic of Germany

Personalised recommendations