Role of Adjuvant and Immunogenic Moieties of M. tuberculosis in Pathogenicity

  • Kazuyuki Kato
  • Ken-Ichi Yamamoto
Part of the Infectious Agents and Pathogenesis book series (IAPA)


Immune responses can be nonspecifically enhanced or modified by ad ministrating certain substances together with the antigens. These substances, called adjuvants, are obtained from bacteria, viruses, parasites, and plants and are highly heterogeneous with respect to their nature and origin. Probably the strongest and most common adjuvants are substances derived from bacteria, especially Mycobacterium tuberculosis. Since the historical experiments by Freund et al.1,2 established that administration of antigens incorporated in water-in-oil emulsion together with killed mycobacteria induced delayed-type hypersensitivity (DTH) and enhanced antibody production, mycobacteria have received a great deal of attention in immunology. Their biologic activities are versatile. For example, the administration of mycobacteria in water-in-oil emulsion induces not only enhancement of DTH and antibody production but also adjuvant polyarthritis,3,4 granuloma formation,5 autoimmune disease,6,7 suppression of tumor growth,8 and increased susceptibility to endotoxin.9 Therefore, many investigators have made efforts to define chemically the adjuvant moieties of mycobacteria. In recent years, Lederer et al.10 identified a minimal adjuvant active structure, N-acetylmuramyl-L-alanyl-D-isoglutamine (MDP), which was then synthesized by Merser et al.11 This molecule has been confirmed to exhibit versatile biologic activities similar to those of mycobacteria and to affect immu nocompetent cell functions.


Spleen Cell Granuloma Formation Purify Protein Derivative Peritoneal Exudate Cell Adjuvant Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freund, J., Casals, J., and Hosmer, E. P., 1937, Sensitization and antibody formation after injection of tubercle baccili and paraffin oil, Proc. Soc. Exp. Biol. Med. 37:509–513.Google Scholar
  2. 2.
    Freund, J., Stern, E. R., and Pisani, T. M., 1947, Isoallergic encephalomyelitis and radiculitis in guinea pigs after one injection of brain and mycobacteria in water-in-oil emulsion, J. Immunol. 57:179–194.PubMedGoogle Scholar
  3. 3.
    Pearson, C. M., 1956, Development of arthritis, periarthritis and periostitis in rats given adjuvants, Proc. Soc. Exp. Biol. Med. 91:95–101.PubMedGoogle Scholar
  4. 4.
    Waksman, B., Pearson, C. M., and Sharp, J. T., 1960, Studies of arthritis and other lesions induced in rats by injection of mycobacterial adjuvant. II. Evidence that the disease is a disseminated immunologic response to exogenous antigen, J. Immunol. 85:403–411.PubMedGoogle Scholar
  5. 5.
    Spector, W. G. ,and Lykke, A. W. J. ,1966, The cellular evolution of inflammatory granulomata, J. Pathol ,92:163–177.CrossRefGoogle Scholar
  6. 6.
    Kabat, E. A., Wolf, A., and Benzer, A. E., 1946, Rapid production of acute dissemi nated encephalomyelitis in rhesus monkey by injection of brain tissue with adjuvants, Science 104:362–363.CrossRefGoogle Scholar
  7. 7.
    Morgan, I. A., 1947, Allergic encephalomyelitis in monkeys in response to injection of normal monkey nervous tissue, J. Exp. Med. 85: 131–140.PubMedCrossRefGoogle Scholar
  8. 8.
    Zbar, B., and Tanaka, T., 1971, Immunotherapy of cancer: Regression of tumors after intralesional injection of living Mycobacterium bovis, Science 172:271–273.PubMedCrossRefGoogle Scholar
  9. 9.
    Suter, E., Velman, G. A., and Hoffman, R. G. ,1958, Sensitivity of mice to endotoxin after vaccination with BCG (Bacillus Calmette-Guérin), Proc. Soc. Exp. Biol. Med. 99:167–173.PubMedGoogle Scholar
  10. 10.
    Ellouz, F., Adam, A., Ciorbaru, R., and Lederer, E., 1974, Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives, Biochem. Biophys. Res. Commun. 59: 1317–1325.PubMedCrossRefGoogle Scholar
  11. 11.
    Merser, C., Sinay, P., and Adam, A., 1975, Total synthesis and adjuvant activity of bacterial peptidoglycan derivatives. Biochem. Biophys. Res. Commun. 66: 1315–1322.CrossRefGoogle Scholar
  12. 12.
    Raffel, S., Arnaud, L. E., Dukes, C. D., and Huang, J. S., 1949, The role of the wax of tubercle bacillus in establishing delayed hypersensitivity, J. Exp. Med. 90:53–71.PubMedCrossRefGoogle Scholar
  13. 13.
    Tanaka, A. ,Tanaka, L., Tsubone, T., Kuroda, Y., and Sugiyama. K., 1965, Fractiona tion and characterization of wax D, peptidoglycolipid of mycobacteria tuberculosis. II. Adjuvanticity of the subfractions of wax D of H37Ra and wax D of other strains of M. tuberculosis, Int. Arch. Allergy Appl. Immunol. 28:340–352.PubMedCrossRefGoogle Scholar
  14. 14.
    White, R. G., Jollès, P., Samour, D., and Lederer, E., 1964, Correlation of adjuvant activity and chemical structure of wax D fraction of mycobacteria, Immunology 7: 158– 171.PubMedGoogle Scholar
  15. 15.
    Pearson, C. M. ,and Wood, F. D., 1959, Studies of polyarthritis and other lesions induced in rats by injection of mycobacterial adjuvant. I. General clinical and pathological characteristics and some modifying factors, Arthritis Rheum. 2:440–449.CrossRefGoogle Scholar
  16. 16.
    Kato, M., 1972, Antibody formation to trehalose-6,6’-dimycolate (cord factor) of Mycobacterium tuberculosis, Infect. Immun. 5:203–211.PubMedGoogle Scholar
  17. 17.
    Bekierkunst, A., Levij, I. S., Yarkoni, E., Vilkas, E., Adam, A., and Lederer, E., 1969, Granuloma formation induced in mice by chemically defined mycobacterial fractions, J. Bacteriol. 100:95–102.PubMedGoogle Scholar
  18. 18.
    Adam, A. ,Ciorbaru, R., Petit, J. F., and Lederer, E., 1972, Isolation and properties of a macromolecular, water-soluble, immunoadjuvant fraction from the cell wall of Mycobacterium smegmatis, Proc. Natl. Acad. Sci. USA 69:851–854.PubMedCrossRefGoogle Scholar
  19. 19.
    Adam, A. ,Ciorbaru, R., Petit, J. F., Lederer, E., Chedid, L., Lamensans, A., Parant, M., Rosselet, J. P., and Berger, F. M., 1973, Preparation and biological properties of watersoluble adjuvant fractions from delipidated cells of Mycobacterium smegmatis and Nocardia opaca, Infect. Immun. 7:855–861.PubMedGoogle Scholar
  20. 20.
    Chedid, L., Parant, M., Parant, F., Gustafson, R. H., and Berger, F. M., 1972, Biological study of a non-toxic, water-soluble immunoadjuvant from mycobacterial cell wall, Proc. Natl. Acad. Sci. USA 69:855–858.PubMedCrossRefGoogle Scholar
  21. 21.
    Modolell, M., Luckenbach, G. A. ,Parant, M., and Munder, P. G., 1974, The adjuvant activity of a mycobacterial water-soluble adjuvant (WSA) in vitro. I. The requirement of macrophages, J. Immunol. 113:395–403.PubMedGoogle Scholar
  22. 22.
    Juy, D., and Chedid, L., 1975, Comparison between macrophage activation and enhancement of nonspecific resistance to tumors by mycobacterial immunoadjuvants, Proc. Natl. Acad. Sci. USA 72:4105–4109.PubMedCrossRefGoogle Scholar
  23. 23.
    Oppenheim, J. J., Togawa, A. ,Chedid, L., and Mizel, S., 1980, Components of mycobacteria and muramyl dipeptide with adjuvant activity induce lymphocyte activating factor, Cell. Immunol. 50:71–81.PubMedCrossRefGoogle Scholar
  24. 24.
    Kotani. S., Watanabe, Y., Kinoshita, F., Shimono, T., Morisaki, I., Shiba, T., Kusumoto, S., Tarumi, T., and Ikenaka, K., 1975, Immunoadjuvant activities of synthetic N-acetylmuramyl-peptides or -amino acids, Biken J. 18:105–111.PubMedGoogle Scholar
  25. 25.
    Azuma, I., Sugimura, K., Taniyama. T., Yamawaki, M., Yamamura, Y., Kusumoto, S., Okada, S., and Shiba, T., 1976, Adjuvant activity of mycobacterial fractions: Adjuvant activity of synthetic iV-acetylmuramyl-dipeptide and the related compounds, Infect. Immun. 14:18–27.PubMedGoogle Scholar
  26. 26.
    Ohkuni, H., Norose, Y., Ohta, M. ,Hayama, M. ,Kimura, Y., Tsujimoto, M. ,Kotani, S., Shiba, T., Kusumoto, S., Yokogawa, K., and Kawata, S., 1979, Adjuvant activities in production of reaginic antibody by bacterial cell wall peptidoglycan or synthetic N-acetylmuramyl dipeptide in mice, Infect. Immun. 24:313–318.PubMedGoogle Scholar
  27. 27.
    Specter, S., Cimprich, R., Friedman, H., and Chedid, L., 1978, Stimulation of an enhanced in vitro immune response by a synthetic adjuvant, muramyl dipeptide, J. Immunol. 120:487–491.PubMedGoogle Scholar
  28. 28.
    Löwy, I.. Bona, C., and Chedid, L., 1977, Target cells for the activity of a synthetic adjuvant: Muramyl dipeptide, Cell. Immunol. 29: 195–199.PubMedCrossRefGoogle Scholar
  29. 29.
    Sugimoto, M. ,Germain, R. N., Chedid, L., and Benacerraf, B., 1978, Enhancement of carrier-synthetic helper T cell function by the synthetic adjuvant, A’-acetylmuramyl-Lalanyl-D-isoglutamine (MDP), J. Immunol. 120:980–982.PubMedGoogle Scholar
  30. 30.
    Sugimura, K., Uemiya, M., Saiki, I. ,Azuma, I., and Yamamura, Y., 1979, The adjuvant activity of synthetic N-acetylmuramyl-dipeptide: Evidence of initial target cells for the adjuvant activity, Cell. Immunol. 43: 137–149.PubMedCrossRefGoogle Scholar
  31. 31.
    Fevrier, M., Birrien, J. L., Leclerc, C. ,Chedid, L. ,and Liacopoulos, P., 1978, The macrophage, target cell of the synthetic adjuvant muramyl-dipeptide (MDP), Eur. J. Immunol. 8:558–562.PubMedCrossRefGoogle Scholar
  32. 32.
    Staruch, M. J. ,and Wood, D. D., 1982, Genetic influences on the adjuvanticity of muramyl dipeptide in vivo, J. Immunol. 128:155–160.PubMedGoogle Scholar
  33. 33.
    Damais, C., Parant, M., Chedid, L., Lefrancier, P., and Choay, J., 1978, In vitro spleen cell responsiveness to various analogs of MDP (7V-acetylmuramyl-L-alanyl-D-isoglutamine), a synthetic immunoadjuvant, in MDP high-responder mice, Cell. Immunol. 35:173–179.PubMedCrossRefGoogle Scholar
  34. 34.
    Allen, E. M., Moore, V. L., and Stevens, J. O. ,1977, Strain variation in BCG-induced chronic pulmonary inflammation in mice. I. Basic model and possible genetic control by non-H-2 genes, J. Immunol. 119:343–347.PubMedGoogle Scholar
  35. 35.
    Yamamoto, K., and Kakinuma, M., 1978, Genetic control of granuloma response to oilassociated BCG cell wall vaccine in mice, Microbiol. Immunol. 22:335–348.PubMedGoogle Scholar
  36. 36.
    Tanaka, A., Nagao, S., Nagao, R., Kotani, S., Shiba, T., and Kusumoto, S., 1979, Stimulation of reticuloendothelial system of mice by muramyl dipeptide, Infect. Immun. 24:302–307.PubMedGoogle Scholar
  37. 37.
    Emori, K., and Tanaka, A., 1978, Granuloma formation by synthetic bacterial cell wall fragment: muramyl dipeptide, Infect. Immun. 19:613–620.PubMedGoogle Scholar
  38. 38.
    Yamamoto, K., Kakinuma, M.. Kato, K., Okuyama, H., and Azuma, I. ,1980, Rela tionship of anti-tuberculous protection to lung granuloma produced by intravenous injection of synthetic 6-0-mycoloyl-N-acetylmuramyl-L-alanyl-D-isoglutamine with or without specific antigens, Immunology 40:557–564.PubMedGoogle Scholar
  39. 39.
    Nagao, S., and Tanaka, A., 1985, Necrotic inflammatory reaction induced by muramyl dipeptide in guinea pigs sensitized by tubercle bacilli, J. Exp. Med. 162:401–412.PubMedCrossRefGoogle Scholar
  40. 40.
    Wuest, B., and Wachsmuth, E. D., 1982, Stimulating effect of N-acetyl muramyl dipeptide in vivo: Proliferation of bone marrow progenitor cells in mice, Infect. Immun. 37:452–462.PubMedGoogle Scholar
  41. 41.
    Galelli, A., and Chedid, L., 1983, Modulation of myelopoiesis in vivo by synthetic adjuvant-active muramyl peptides. Induction of colony-stimulating activity and stimulation of stem cell proliferation, Infect. Immun. 42: 1081–1085.PubMedGoogle Scholar
  42. 42.
    Chedid, L., Parant, M., Parant, F., Lefrancier, P., Choay, J., and Lederer, E., 1977, Enhancement of nonspecific immunity to Klebsiella pneumoniae infection by a synthetic immunoadjuvant (N-acetylmuramyl-L-alanyl-D-isoglutamine) and several analogs, Proc. Natl. Acad. Sci. USA 74:2089–2093.PubMedCrossRefGoogle Scholar
  43. 43.
    Matsumoto, K., Ogawa, H., Nagase, O., Kusama, T., and Azuma, I., 1981, Stimulation of nonspecific host resistance to infection induced by muramyldipeptide, Microbiol. Immunol. 25: 1047–1058.PubMedGoogle Scholar
  44. 44.
    Humphers, R. C., Henika, P. R., Ferraresi, R. W., and Krahenbuhl, J. L., 1980, Effects of treatment with muramyl dipeptide and certain of its analogs on resistance to Listeria monocytogenes in mice, Infect. Immun. 30:462–466.Google Scholar
  45. 45.
    Cummings, N. P., Pabst, M. J. ,and Johnston, R. B., 1980, Activation of macrophages for enhanced release of superoxide anion and greater killing of Candida albicans by injection of muramyl dipeptide, J. Exp. Med. 152:1659–1669.PubMedCrossRefGoogle Scholar
  46. 46.
    Kierszenbaum, F., and Ferraresi, R. W., 1979, Enhancement of host resistance against Trypanosoma cruzi infection by the immunoregulatory agent muramyl dipeptide, Infect. Immun. 25:273–278.Google Scholar
  47. 47.
    Hadden, J. W., Englard, A. ,Sadlik, J. R., and Hadden, E. M., 1979, The comparative effects of isoprinosine, levamisole, muramyl dipeptide and SM 1213 on lymphocyte and macrophage proliferation and activation in vitro, Int. J. Immunopharm. 1:17–27.CrossRefGoogle Scholar
  48. 48.
    Ogawa, T. ,Kotani, S., Fukuda, K., Tsukamoto, Y., Mori, M., Kusumoto, S., and Shiba, T. ,1982, Stimulation of migration of human monocytes by bacterial cell walls and muramyl dipeptides, Infect. Immun. 38:817–824.PubMedGoogle Scholar
  49. 49.
    Pabst, M. J. ,and Johnston, R. B., 1980, Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide, J. Exp. Med. 151:101–114.PubMedCrossRefGoogle Scholar
  50. 50.
    Kaku, M., Yagavva, K., Nagao, S., and Tanaka, A., 1983, Enhanced superoxide anion release from phagocytes by muramyl dipeptide or lipopolysaccharide, Infect. Immun. 39:559–564.PubMedGoogle Scholar
  51. 51.
    Finger, H., and Wirsing von König, C-H., 1980, Failure of synthetic muramyldipeptide to increase antibacterial resistance, Infect. Immun. 27:288–291.PubMedGoogle Scholar
  52. 52.
    Krahenbuhl, J. L., Humphres, R. C., and Ferraresi, R. W., 1980, Effect of adjuvant immunotherapy of infection with M. leprae and M. marinum, Int. J. Leprosy 48:504–505.Google Scholar
  53. 53.
    Olds, G. R., Chedid, L., Lederer, E., Adel, A., and Mahmoud, F., 1980, Induction of resistance to Schistosoma mansoni by natural cord factor and synthetic lower homologues, J. Infect. Dis. 141:473–478.PubMedCrossRefGoogle Scholar
  54. 54.
    Leclerc, C., Bourgeois, E., and Chedid, L., 1982, Demonstration of muramyl dipeptide (MDP)-induced T suppressor cells responsible for MDP immunosuppressive activity, Eur. J. Immunol. 12:249–252.PubMedCrossRefGoogle Scholar
  55. 55.
    Kishimoto, T., Hirai, Y., Nakanishi, K., Azuma, I., Nagamatsu, A., and Yamamura, Y., 1979, Regulation of antibody response in different immunoglobulin classes. VI. Selective suppression of IgE response by administration of antigen-conjugated muramylpeptides, J. Immunol. 123:2709–2715.PubMedGoogle Scholar
  56. 56.
    Kato, K., Yamamoto, K., Kimura, T., Azuma, I., and Askenase, P. W., 1984, Suppression of BCG cell wall-induced delayed-type hypersensitivity by pretreatment with killed BCG: Induction of nonspecific suppressor T cells by adjuvant portion (MDP) and of specific suppressor T cells by the antigen portion (TAP), J. Immunol. 132:2790–2795.PubMedGoogle Scholar
  57. 57.
    Parant, M., Parant, F., Chedid, L., Yapo, A., Petit, J. F., and Lederer, E., 1979, Fate of the synthetic immunoadjuvant, muramyl dipeptide (14C-labeled) in the mice, Int. J. Immunopharmacol. 1:35–41.PubMedCrossRefGoogle Scholar
  58. 58.
    Roberson, B. S., and Schwab, J. H., 1961, Endotoxic properties associated with cell walls of group A streptococci. J. Infect. Dis. 108:25–34.PubMedCrossRefGoogle Scholar
  59. 59.
    Rotta, J. ,and Bednar, B., 1969, Biological properties of cell wall mucopeptide of hemolytic streptococci, J. Exp. Med. 130:31–47.PubMedCrossRefGoogle Scholar
  60. 60.
    Kotani, S., Watanabe, Y., Shimono, T., Harada, K., Shiba, T., Kusumoto, S., Yokogawa, K., and Taniguchi, M., 1976, Correlation between the immunoadjuvant activities and pyrogenicities of synthetic N-acetylmuramyl-peptides or -amino acids, Biken J. 19:9–13.PubMedGoogle Scholar
  61. 61.
    Dinarello, C. A., Elin, R. J., Chedid, L., and Wolff, S. M., 1978, The pyrogenicity of the synthetic adjuvant muramyl dipeptide and two structural analogues, J. Infect. Dis. 138:760–767.PubMedCrossRefGoogle Scholar
  62. 62.
    Riveau, G., Masek, K., Parant, M., and Chedid, L., 1980, Central pyrogenic activity of muramyl dipeptide, J. Exp. Med. 152:869–877.PubMedCrossRefGoogle Scholar
  63. 63.
    Krueger, J. M., Pappenheimer, J. R., and Karnovsky, M. L., 1982, Sleep-promoting effects of muramyl peptides, Proc. Natl. Acad. Sci. USA 79:6102–6106.PubMedCrossRefGoogle Scholar
  64. 64.
    Bloom, B. B., and Bennett, B., 1966, Mechanism of a reaction in vitro associated with delayed-type hypersensitivity, Science 153:80–82.PubMedCrossRefGoogle Scholar
  65. 65.
    Takatsu, K., Tominaga, A., and Hamaoka, T., 1980, Antigen-induced T cell-replacing factor (TRF). I. Functional characterization of a TRF-producing helper T cell subset and genetic studies on TRF production, J. Immunol. 124:2414–2422.PubMedGoogle Scholar
  66. 66.
    Yamamoto, K., and Takahashi, Y., 1971, Macrophage migration inhibition by serum from desensitized animals previously sensitized with tubercle bacilli, Nature (New Biol.) 233:261–262.CrossRefGoogle Scholar
  67. 67.
    Yamamura, Y., Ogawa, Y., Maeda, H., and Yamamura, Y., 1974, Prevention of tuber culous cavity formation by desensitization with tuberculin-active peptide, Am. Rev. Respir. Dis. 109:594–601.PubMedGoogle Scholar
  68. 68.
    Kato, K., and Yamamoto, K., 1982, Suppression of BCG cell wall-induced delayed-type hypersensitivity by BCG pre-treatment. II. Induction of suppressor T cells by heatkilled BCG injection, Immunology 45:655–661.PubMedGoogle Scholar
  69. 69.
    Colizzi, V., Ferluga, J., Garreau, F., Malkovsky, M., and Asherson, G. L. ,1984, Suppressor cells induced by BCG release non-specific factors in vitro which inhibit DNA synthesis and interleukin-2 production, Immunology 51:65–71.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Kazuyuki Kato
    • 1
  • Ken-Ichi Yamamoto
    • 1
  1. 1.Institute of Immunological ScienceHokkaido UniversityKita-ku, Sapporo 060Japan

Personalised recommendations