Neurosteroids: Pregnenolone and Dehydroepiandrosterone in the Brain

  • Etienne-Emile Baulieu
  • Paul Robel
  • Oliver Vatier
  • Marc Haug
  • Claude Le Goascogne
  • Eliane Bourreau
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)


Brain testosterone and corticosteroids arise from peripheral sources, whereas pregnenolone (Δ5-P) and dehydroepiandrosterone (DHA), the 3β-hydroxy-Δ5 derivatives of cholesterol which serve as precursors of steroid hormones in steroidogenic glands, accumulate in the brain by proper mechanism(s), even after surgical or pharmacological suppression of endocrine glands (adrenals, gonads). They are found in definite proportions as free steroids, or sulfate and fatty acid esters. Two enzymes involved in side-chain cleavage, cytochrome P-450scc and adrenodoxin, have been immunohistochemically localized in white matter, suggesting a possible modulatory/trophic general function; they were also present in a few neurons of the olfactory bulb, entorhinal cortex and cingulum, evoking an olfactory pathway. The “neurosteroid” concept is based on changes observed in a variety of physiological situations, including diurnal rhythm, development, and heterosexual exposure of male to female rats. Pharmacologically, DHA decreased a particular type of male mice agressive behavior linked to lactating female signal. The mode of action of Δ5-P and DHA is yet unknown. It may include their transformation to classical steroid hormones acting on a paracrine mode, or directly their binding to unknown membrane or intracellular receptors, or even the control of neuronal functions by their insertion into membranes.


Olfactory Bulb Fatty Acid Ester Endocrine Gland Testosterone Propionate Cycling Female 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baulieu, E.E, Corpéchot, C., Dray, F., Emiliozzi, R., Lebeau, M.C., Mauvais-Jarvis, P. and Robel, P. (1965). An adrenal-secreted “androgen”: dehydroisoandrosterone sulfate. Its metabolism and a tentative generalization on the metabolism of other steroid conjugates in man. Rec. Progr. Hormone Res., 21, 1167–1178.Google Scholar
  2. Bleau, G., Bordley, F.H.., Longpré, J., Chapdelaine, A., Roberts, K.D. (1974). Cholesterol sulfate. I. Occurrence and possible biological function as an amphipathic lipid in the membrane of the human erythrocyte. Biochem. Bíophys. Acta, 352, 1–9.Google Scholar
  3. Blondeau, J.P. and Baulieu, E.E. (1984). Progesterone receptor characterized by photoaffinity labelling in the plasma membrane of Xenopus laevis oocytes. Biochem. J., 219, 785–792.Google Scholar
  4. Carette, B., Barry, J., Linkie, D., Ferin, M., Mester, J. and Baulieu, E.E. (1979). Effets de l’oestradiol-7-acide butyrique au niveau des cellules hypothalamiques. C.R. Acad. Sci. Paris, 288, 631–634.Google Scholar
  5. Carette, B. and Poulain, P. (1984). Excitatory effect of dehydroepiandrosterone, its sulfate ester and pregnenolone sulfate, applied by iontophoresis and pressure, on single neurones in the septo-preoptic area of the guinea pig. Neurosci. Lett., 45, 205–210.CrossRefGoogle Scholar
  6. Clarke, C., Groyer, A., Baulieu, E.E. and Robel, P. (1984). Pregnenolone metabolism in the rat brain. 7th Int. Congr. Endocrinol. Quebec, Canada, abstract n°395. Excerpta Medica International Congress Series 652, Amsterdam.Google Scholar
  7. Corbier, P. and Roffi, J. (1978). Increased adrenocortical activity in the newborn rat. Biol. Neonate., 33, 72–79.CrossRefGoogle Scholar
  8. Corpéchot, C., Robel, P., Axelson, M., Sjövall, J. and Baulieu, E.E. (1981a). Characterization and measurement of dehydroepiandrosterone sulfate in the rat brain. Proc. Natl. Acad. Sci. USA, 78, 4704–4707.CrossRefGoogle Scholar
  9. Corpéchot, C., Robel, P., Lachapelle, F., Baumann, N., Axelson, M., Sjövall, J. and Baulieu, E.E. (1981b). Déhydroépiandrostérone libre et sulfo-conjuguée dans le cerveau de souris dysmyéliniques. C.R. Acad. Sci. Paris, 292, 231–234.Google Scholar
  10. Corpéchot, C., Synguelakis, M., Talha, S., Axelson, M., Sjövall, J., Vihko, R., Baulieu, E.E. and Robel, P. (1983). Pregnenolone and its sulfate ester in the rat brain. Brain Res., 270, 119–125.CrossRefGoogle Scholar
  11. Corpéchot, C., Leclerc, P., Baulieu, E.E. and Brazeau, P. (1985). Neurosteroids: regulatory mechanisms in male rat brain during heterosexual exposure. Steroids, 45, 229–234.CrossRefGoogle Scholar
  12. Cutler, G.B., Jr., Glenn, M., Bush, M., Hodgen, G.D., Graham, C.E. and Loriaux, D.L. (1978). Adrenarche: a survey of rodents, domestic animals, and primates. Endocrinology, 103, 2112–2118.CrossRefGoogle Scholar
  13. Du Bois, R.N., Simpson, E.R., Kramer, R.E. and Waterman, M.R. (1981). Induction of synthesis of cholesterol side chain cleavage cytochrome P-450 by adrenocorticotropin in cultured bovin. Adrenocrotical cells. J. Biol. Chem., 256, 7000–7005.Google Scholar
  14. Fuxe, K., Gustafsson, J.A. and Wetterberg, L. (1981). Steroid Hormone Regulation of the Brain. Pergamon Press, Oxford.Google Scholar
  15. Haug, M. and Brain, P.F. (1979). Effects of treatment with testosterone and oestradiol on the attack by groups of gonadectomized male and female mice towards lactating intruders. Physiol. Behay. 23, 397–400.CrossRefGoogle Scholar
  16. Haug, M., Spetz, J.F., Schlegel, M.L. and Robel, P. (1983). La déhydroépiandrostérone inhibe le comportement agressif de souris males castrées. C.R. Acad. Sci. Paris, 296, 975–977.Google Scholar
  17. Kishimoto, Y. and Hoshi, M. (1972). Dehydroepiandrosterone sulfate in rat brain: incorporation from blood and metabolism in vivo. J. Neurochem., 19, 2207–2215.CrossRefGoogle Scholar
  18. Knapstein, P., David, A., Wu, C., Archer, D.F., Flickinger, G.L. and Touchstone, J.C. (1986). Metabolism of free and sulfoconjugated DHEA in brain tissue in vivo and in vitro. Steroids, 14, 483–498.Google Scholar
  19. Lieberman, S., Greenfield, N.J. and Wolfson, A. (1984). A heuristic proposal for understanding steroidogenic processes. Endocrine Rev., 5, 128–148.CrossRefGoogle Scholar
  20. Majewska, M.D., Schwartz, R.D. (1986). Pregnenolone-sulfate: an endogenous antagonist of the γ-aminobutyric acid receptor complex in brain ? Brain Res., in press.Google Scholar
  21. Oftebro, H., Stormer, E.C. and Pedersen, J.I. (1979). The presence of an adrenodoxin-like ferredoxin and cytochrome P-450 in brain mitochondria. J. Biol. Chem. 254, 4331–4334.Google Scholar
  22. Pashko, L.L., Rovito, R.J., Williams, J.R., Sobel, E.L. and Schwartz, A.G. (1984). Dehydroepiandrosterone (DHEA) and 3ß-methyl-androst-5-en-17-one: inhibitors of 7,12-dimethylbenz-(a)-anthracene (DMBA)-initiated and 12–0-tetradecanoyl phorbol-13-acetate (TPA)-promoted skin papilloma formation in mice. Carcinogenesis, 5, 463–466.CrossRefGoogle Scholar
  23. Robel, P. and Baulieu, E.E. (1985). Neuro-steroids: 30-hydroxyL5-derivatives in the rodent brain. Neurochem. Int., 7, 953–958.CrossRefGoogle Scholar
  24. Robel, P., Corpéchot, C., Clarke, C., Groyer, A., Synguelakis, M., Vourc’h, C. and Baulieu, E.E. (1986a). Neuro-steroids: 3ß-hydroxy-Δ5-derivatives in the rat brain. In Neuroendocrine Molecular Biology. (eds. G. Fink, A.J. Harmar and K.W. McKerns ). Plenum Press, New York.Google Scholar
  25. Robel, P., Bourreau, E., Corpéchot, C., Dang, C.D., Halberg, F., Clarke, C., Haug, M., Schlegel, M.L., Synguelakis, M., Vourch’, C. and Baulieu, E.E. (1986b). Neuro-steroids: 3ß-hydroxy-05-derivatives in the rat and monkey brain. J. Ster. Biochem., in press.Google Scholar
  26. Robel, P., Synguelakis, M., Halberg, F. and Baulieu, E.E. (1986c). Persistance d’un rythme circadien de la déhydroépiandrostérone dans le cerveau, mais non dans le plasma, de rats castrés et surrénalectomisés. C.R. Acad. Sci. Paris, 303, 235–238.Google Scholar
  27. Seybert, D.W., Lancaster, J.R., Jr., Lambeth, J.D. and Kamin, H. (1979). Participation of the membrane in the side chain cleavage of cholesterol. Reconstitution of cytochrome P-450 into phospholipid vesicles. J. Biol. Chem., 254, 12088–1209Google Scholar
  28. Synguelakis, M., Halberg, F., Baulieu, E.E. and Robel, P. (1985). Evolution circadienne de D 3ß-hydroxystéroïdes et de glucocorticostéroides dans le plasma et le cerveau de rat. C.R. Acad. Sci. Paris, 301, 823–826.Google Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • Etienne-Emile Baulieu
  • Paul Robel
  • Oliver Vatier
  • Marc Haug
  • Claude Le Goascogne
  • Eliane Bourreau

There are no affiliations available

Personalised recommendations