Skip to main content

Control of Plasma Membrane Transducing Systems by Second Messengers and by Cellular Metabolism

  • Chapter
Receptor-Receptor Interactions

Part of the book series: Wenner-Gren Center International Symposium Series ((WGCISS))

  • 46 Accesses

Abstract

The focus of this meeting on receptor-receptor interactions is not so much on the direct interaction of one receptor protein molecule with another different protein receptor molecule, but rather on the immediate products of the transducing events mediated by one class of receptors acting as modulators of the functions of a second class of receptors. This is a special case of a much larger phenomenon, that of the interactions between components of one messenger system, e.g., the Ca2+ messenger system, with those in another, e.g., the cAMP messenger system (Rasmussen, 1981). It is an intramembrane integrative mechanism. The special feature of the receptor-receptor theme is that the interactions are those which specifically influence other transducing events at the level of the plasma membrane. Even within this category of interactions, receptor-receptor interactions are only one example of this class of phenomena. We will first discuss examples of receptor-receptor interaction in endocrine systems, and then focus attention on two other types of control processes in which a coupling occurs between a transducing event and either a change in ion transport or a change in cellular metabolism. We do so for two reasons: first, to emphasize the fact that signal transducing events other than those directly linked to receptor-transducer interactions are an important feature of plasma membrane function; and second, to emphasize the importance of these membrane-linked events in the regulation of sustained cellular responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albano, J.D., Brown, B.L., Ekins, R.P., Tait, S.A.S. and Tait, J.F. (1974). The effect of potassium, 5-hydroxytryptamine, adrenocorticotrophin and angiotensin II on the concentration of adenosine 3’:5’-cyclic monophosphate in suspensions of dispersed rat adrenal zona glomerulosa and zona fasiculata cells. Bio- chem. J., 142, 391–400.

    Google Scholar 

  • Assimacopoulos-Jeannet, F.D., Blackmore, P.F. and Exton, J.H. (1982). Studies of the interaction between agonists in the control of hepatic glucose output. J. Biol. Chem., 257, 3759–3765.

    Google Scholar 

  • Balla, T., Enyedi, P., Hunyady, L. and Spät, A. (1984). Effects of lithium on angiotensin II-stimulated phosphatidylinositol turnover and aldosterone production in adrenal glomerulosa cells: a possible causal relationship. FEBS Lett., 171, 179–182.

    Article  Google Scholar 

  • Brum, G., Osterrieder, W. and Tautwein, W. (1984). ß-adrenergic increase in the calcium conductance of cardiac myocytes studied with the patch clamp. Pflügers Arch., 401, 111–118.

    Article  Google Scholar 

  • Charest, R., Prpic, V., Exton, J.H. and Blackmore, P.F. (1985). Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiotensin II and its relationship to changes in cytosolic free Cat+. Biochem. J., 227, 79–90, 1985.

    Google Scholar 

  • Dunlop, M.E. and Larkins R.G. (1985). Pancreatic islets synthesize phospholipids de novo from glucose via acyl-dihydroxyacetone phosphate. Biochem. Biophys. Res. Commun., 132, 467–473.

    Google Scholar 

  • Dunlop, M.E., Larkins, R.G. and Court, J.M. (1982). Endogenous ionophoretic activity in the neonatal rat pancreatic islets. FEBS Lett., 144, 259–267.

    Article  Google Scholar 

  • Gallo-Payet, N. and Escher, E. (1985). Adrenocorticotropin receptors in rat adrenal glomerulosa cells. Endocrinology, 117, 38–46.

    Article  Google Scholar 

  • Hansen, C.A., Mah, S. and Williamson, J.P. (1986). Formation and metabolism of inositol 1,3,4,5 tetrakisphosphate in liver. J. Biol. Chem., 261., 8100–8103.

    Google Scholar 

  • Hausdorff, W.P., Aguilera, G., and Catt, K. (1986) Selective enhancement of angiotensin II and potassium-stimulated aldosterone secretion by the calcium channel agonist BAY K 8644. Endocrinology 118, 869–974.

    Article  Google Scholar 

  • Hedeskov, C.J. (1980). Mechanism of glucose-induced insulin secretion. Physiol. Rev., 60, 442–509.

    Google Scholar 

  • Henquin, J.C. (1985). The interplay between cAMP and ions in the stimulus-secretion coupling in pancreatic ß-cells. Arch. Intern. Phys. Biochem., 93, 37–48.

    Article  Google Scholar 

  • Hermansen, K. (1984). Effects of cholecystokinin (CCK)-4,nonsulfated CCK-9 and sulfated CCK-8 on pancreatic somatostatin, insulin and glucagon secretion in the dog: studies in vitro. Endocrinology, 114, 1770–1775.

    Article  Google Scholar 

  • Hyatt, P.J., Tait, J.F. and Tait, S.A.S. (1986). The mechanism of the effect of K+ on the steroidogenesis of rat zona glomerulosa cells of the adrenal cortex: role of cyclic AMP. Proc. Roy. Soc. Lond., B227, 21–42.

    Article  Google Scholar 

  • Kojima, I., Kojima, K., Kreutter, D. and Rasmussen, H. (1984a). The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways. J. Biol Chem., 259, 14448–14457.

    Google Scholar 

  • Kojima, K., Kojima, I. and Rasmussen, H. (1984b). Dihydropyri-dine calcium agonist and antagonist effects on aldosterone secretion. Am. J. Physiol., 247 (Endocrinol. Metab. 10, E645–650

    Google Scholar 

  • Kojima, I., Kojima, K. and Rasmussen, H. (1985a). Role of calcium and cAMP in the action of adrenocorticotropin on aldosterone secretion. J. Biol. Chem., 260., 4248–4256.

    Google Scholar 

  • Kojima, I., Kojima, K. and Rasmussen, H. (1985b). Characteristic of angiotensin II-, K+-, and ACTH-induced calcium influx in adrenal glomerulosa cells. J. Biol. Chem., 260, 9171–9176.

    Google Scholar 

  • Kojima, I., Kojima, K. and Rasmussen, H. (1985c). Role of calcium fluxes in the sustained phase of angiotensin II-mediated aldosterone secretion from adrenal glomerulosa cells. J. Biol. Chem., 260, 9177–9184.

    Google Scholar 

  • Kojima, I., Kojima, K. and Rasmussen, H. (1985d). Intracellular calcium and adenosine 3’,5’-cyclic monophosphate as mediators of potassium-induced aldosterone secretion. Biochem. J., 228, 6976.

    Google Scholar 

  • Kojima, I. and Ogata, E. (1986). Direct demonstration of adrenocorticotropin-induced changes in cytoplasmic free calcium with aequorin in adrenal glomerulosa cell. J. Biol. Chem., 261, 9832–9838.

    Google Scholar 

  • Mahaffee, D.D. and Ontiges, D.A. (1980). The role of calcium in the control of adrenal adenylate cyclase. J. Biol. Chem., 255, 1565–1571.

    Google Scholar 

  • Malaisse, W.J. (1973). Insulin secretion: multifactorial regula- tion for a single process of release. Diabetologia, 9, 167–173.

    Article  Google Scholar 

  • Mauger, J.-P., Poggioli, J. and Claret, M. (1985). Synergistic stimulation of the Ca2+ influx in rat hepatocytes by glucagon and the Ca2+-linked hormones vasopressin and angiotensin II. J. Biol. Chem. 260, 11635–11642.

    Google Scholar 

  • Mauger, J.-P., Poggioli, J., Guesdon, F. and Claret, M. (1984). Noradrenaline, vasopressin and angiotensin increase Ca2+ influx by opening a common pool of Ca2+ channels in isolated rat liver cells. Biochem. J. 221, 121–127.

    Google Scholar 

  • Mcllhinney, J. and Schulster, D. (1975). Studies on the binding of 1,25-I-labeled corticotrophin to isolated rat adrenocortical cells. J. Endocrinol., 64, 175–184.

    Article  Google Scholar 

  • Poggioli, J., J.-P. Mauger, and M. Claret. (1986). Effect of cyclic AMP-dependent hormones and Ca2+-mobilizing hormones on the Ca2+ influx and polyphosphoinositide metabolism in rat hepatocytes. Biochem. J., 235, 663–669.

    Google Scholar 

  • Presti, C.F., Jones, L.R. and Lindenmann, J.P. (1985). Isoproterenol-induced phosphorylation of a 15-kilodalton sarcolemmal protein in intact myocardium. J. Biol. Chem., 260, 3860–3867.

    Google Scholar 

  • Rasmussen, H. (1981) Calcium and cAMP As Synarchic Messengers. John Wiley and Sons, New York.

    Google Scholar 

  • Rasmussen, H. (1986). The calcium messenger system. N. Engl. J. Med., 314, 1094–1101, 1164–1170.

    Article  Google Scholar 

  • Rasmussen, H. and Barrett, P.Q. (1984). Calcium messenger system: an integrated view. Physiol. Rev., 64, 938–984.

    Google Scholar 

  • Reuter, H. (1983). Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature, 301, 569–574.

    Article  Google Scholar 

  • Sala, G.B., Hayashi, K., Catt, K.J. and Dufau, M.L. (1979). AdAdrenocorticotropin action in isolated adrenal cells. J. Biol. Chem. 254, 3861–3865.

    Google Scholar 

  • Saruta, T., Cook, R. and Kaplan, N.M. (1972). Adrenalcortical steroidogenesis: studies on the mechanism of action of angiotensin and electrolytes. J. Clin. Invest., 51, 2239–2245.

    Article  Google Scholar 

  • Sharp, G.S. (1979). The adenylate cyclase-cyclic AMP system in islets of Langerhans and its role in the control of insulin secretion. Diabetologia, 16, 287–296.

    Article  Google Scholar 

  • Sutherland, E.W., Robison, G.S. and Butcher, R.S. (1968). Some aspects of the biological role of adenosine 3’:5’-monophosphate (cyclic AMP). Circulation, 37, 279–306.

    Google Scholar 

  • Thomas, A.P., Marks, J.S., Coll, K.E. and Williamson, J.R. (1983). Quantitation and early kinetics of inositol lipid changes induced by vasopressin in isolated and cultured hepatocytes. J. Biol. Chem., 258, 5716–5725.

    Google Scholar 

  • Williamson, J.R., Cooper, R.H. and Hoek, J.R. (1981). Role of calcium in the hormonal regulation of liver metabolism. Biochim. Biophys. Acta 639, 243–295.

    Google Scholar 

  • Zawalich, W.S., Takuwa, N., Takuwa, Y., Diaz, V.A. and Rasmussen, H. (1987) Interaction of cholecystokinin and glucose in rat pancreatic islets. Diabetes. In press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 The Wenner-Gren Center

About this chapter

Cite this chapter

Rasmussen, H., Barrett, P. (1987). Control of Plasma Membrane Transducing Systems by Second Messengers and by Cellular Metabolism. In: Fuxe, K., Agnati, L.F. (eds) Receptor-Receptor Interactions. Wenner-Gren Center International Symposium Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5415-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5415-4_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5417-8

  • Online ISBN: 978-1-4684-5415-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics